TEXT SEARCHABLE DOCUMENT - 2009

Data Evaluation Report on the Acute Toxicity of BAS 800 02 H (Saflufenacil) to Terrestrial Vascular Plants: Seedling Emergence

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Data Requirement: PMRA Data Code: 9.8.4 (TGAI) or 9.8.6 (EP)

EPA DP Barcode: DP349851

OECD Data Point: IIA 8.12 (TGAI) and IIIA 10.8.1.1 (EP)

EPA Guideline: OPPTS 850.4225 (123-1a)

Test material: BAS 800 02 H Purity: 12.0% (wt/wt)

Common name: Saflufenacil

Chemical name: IUPAC: N'-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydro-1(2H)-

pyrimidinyl)benzoyl]-N-isopropyl-N-methylsulfamide

CAS name: Not Reported CAS No.: 372137-35-4 Synonyms: None Reported

Primary Reviewer: John Marton Signature:

Staff Scientist, Cambridge Environmental, Inc. Date: 04/01/08

Secondary Reviewer: Teri S. Myers Signature:

Senior Scientist, Cambridge Environmental, Inc.

Date: 04/14/08

Primary Reviewer: Anita Pease Date: 06/09/09

Senior Biologist, U.S. EPA

Secondary Reviewer: Janine Glaser Date: 06/09/09

HC-PMRA-EAD

Secondary Reviewer: Farzad Jahromi Date: 06/09/09

DEWHA-APVMA

Company Code BAZ
Active Code SFF

Use Site Category: 13 (terrestrial feed crops) and 14 (terrestrial food crops)

EPA PC Code 118203

CITATION: Porch, J.R., H.O. Krueger, K. Martin and C. Holmes. 2007. BAS 800 02 H: A Toxicity Test to Determine the Effects of the Test Substance on Seedling Emergence of Ten Species of Plants. Unpublished study performed by Wildlife International, Ltd., Easton, MD. Laboratory report number 147-228. Study sponsored by BASF Corporation, Research Triangle Park, NC. Study completed November 9, 2007.

DISCLAIMER: This document provides guidance for EPA and PMRA reviewers on how to complete a data evaluation record after reviewing a scientific study concerning the acute toxicity of a pesticide to terrestrial vascular plants. It is not intended to prescribe conditions to any external party for conducting this study nor to establish absolute criteria regarding the assessment of whether the study is scientifically sound and whether the study satisfies any applicable data requirements. Reviewers are expected to review and to determine for each study, on a case-by-case basis, whether it is scientifically sound and provides sufficient information to satisfy applicable data requirements. Studies that fail to meet any of the conditions may be accepted, if appropriate; similarly, studies that meet all of the conditions may be rejected, if appropriate. In sum, the reviewer is to take into account the totality of factors related to the test methodology and results in determining the acceptability of the study.

2083885

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

EXECUTIVE SUMMARY:

The effect of BAS 800 02 H (formulation containing the active ingredient Saflufenacil) on the seedling emergence of monocot (corn, Zea mays; onion, Allium cepa; ryegrass, Lolium perenne; and wheat, Triticum aestivum) and dicot (bean, Phaseolus vulgaris; cabbage, Brassica oleracea; lettuce, Lactuca sativa; oilseed rape, Brassica napus; soybean, Glycine max; and tomato, Lycopersicon esculentum) crops was studied at varying nominal application rates. Cabbage and lettuce were treated with nominal application rates of 0 (negative and adjuvant controls), 0.00049, 0.0015, 0.0044, 0.0132, 0.0396 and 0.119 lbs a.i./A (equivalent to 0 (controls), 0.549, 1.65, 4.94, 14.8, 44.4, and 133 g a.i./ha, respectively); measured application rates were 0.000629, 0.00143, 0.00392, 0.0127, 0.0321 and 0.112 lbs a.i./A (equivalent to 0.704, 1.60, 4.39, 14.2, 35.9, and 125 g a.i./ha, respectively). Onion was treated with nominal application rates of 0 (negative and adjuvant controls), 0.0015, 0.0044, 0.0132, 0.0396, 0.119 and 0.357 lbs a.i./A (equivalent to 0 (controls), 1.65, 4.94, 14.8, 44.4, 133, and 400 g a.i./ha, respectively); measured application rates were 0.00143, 0.00392, 0.0127, 0.0321, 0.112 and 0.347 lbs a.i./A (equivalent to 1.60, 4.39, 14.2, 35.9, 125, and 389 g a.i./ha, respectively). Oilseed rape and tomato were treated with nominal application rates of 0 (negative and adjuvant controls), 0.0015, 0.0044, 0.0132, 0.0396 and 0.119 lbs a.i./A (equivalent to 0 (controls), 1.65, 4.94, 14.8, 44.4, and 133 g a.i./ha, respectively); measured application rates were 0.00143, 0.00392, 0.0127, 0.0321 and 0.112 lbs a.i./A (equivalent to 1.60, 4.39, 14.2, 35.9, and 125 g a.i/ha, respectively). Corn, ryegrass, wheat, bean and soybean were treated with nominal application rates of 0 (negative and adjuvant controls), 0.0044, 0.0132, 0.0396, 0.119 and 0.357 lbs a.i./A (equivalent to 0 (controls), 4.94, 14.8, 44.4, 133, and 400 g a.i./ha, respectively); measured application rates were 0.00483, 0.0127, 0.0376, 0.111 and 0.319 lbs a.i./A (5.41, 14.2, 42.1, 124, and 357 g a.i./ha, respectively). The growth medium used in the seedling emergence test was natural soil, classified as a sandy loam, with an organic matter content of 1.3% and a pH of 7.2. On Day 21 the surviving plants per pot were recorded and cut at soil level for measuring the plant height and dry weight.

Dry weight was significantly affected in all species with the exception of corn and onion; plant height was significantly affected in all species with the exception of corn, onion, wheat and bean; and survival was significantly affected in all species with the exception of corn and wheat. The % inhibition in seedling emergence in the treated species as compared to the control ranged from -18.8% (ryegrass) to 96.6% (lettuce). The most sensitive monocot species, based on dry weight, in the seedling emergence test was ryegrass with NOAEC, EC $_{05}$ EC $_{25}$, and EC $_{50}$ values of 0.0127, 0.0012, 0.0062, and 0.0198 lbs a.i./A, respectively (equivalent to 14.2, 1.32, 6.97, and 22.2 g a.i./ha, respectively) Oilseed rape was the most sensitive dicot, based on % survival, with NOAEC, EC $_{05}$, EC $_{25}$ and EC $_{50}$ values of <0.00143, 0.0002, 0.00087, and 0.0026 lbs a.i./A, respectively (equivalent to <1.6, 0.2241, 1.05, and 2.91 g a.i./ha, respectively).

Phytotoxic effects were observed in all species with the exception of wheat. Observed effects included chlorosis, necrosis, stem curl, leaf curl, color change and unshed seed coats.

Maximum Labeled Rate: Not Reported

Results Synopsis

Monocot

 EC_{05}/IC_{05} : 0.0012 lbs a.i./A (1.32 g a.i./ha) EC_{25}/IC_{25} : 0.0062 lbs a.i./A (6.97 g a.i./ha)

EC₅₀/IC₅₀: 0.0198 lbs a.i./A (22.2 g a.i./ha) NOAEC: 0.0127 lbs a.i./A (14.2 g a.i./ha)

Slope: N.D. Std err: N.D.

Most sensitive monocot: Ryegrass

95% C.I.: $5.4x10^{-6}$ -0.0236 lbs a.i./A (0.006-26.4 g a.i./ha) 95% C.I.: <0.0000-0.0468 lbs a.i./A (<0.0000-49.0 g a.i./ha)

95% C.I.: N.D

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Most sensitive parameter: Dry Weight

Dicot

 EC_{05}/IC_{05} : 0.0002 lbs a.i./A (0.2241 g a.i./ha) EC_{25}/IC_{25} : 0.00087 lbs a.i./A (1.05 g a.i./ha)

95% C.I.: 1.4x10⁻⁵-0.0021 lbs a.i./A (0.0157-2.35 g a i./ha) 95% C.I.: 0.00016-0.0048 lbs a.i./A (0.1792-5.38 g a i./ha) 95% C.I.: 0.00078-0.0088 lbs a.i./A (0.8738-9.86 g a i./ha)

EC₅₀/IC₅₀: 0.0026 lbs a.i./A (2.91 g a.i./ha)

NOAEC: <0.00143 lbs a.i./A (<1.6 g a.i./ha)

Slope: 1.40 Std err: 0.366

Most sensitive dicot: Oilseed Rape

Most sensitive parameter: Percent Survival

This toxicity study is classified as ACCEPTABLE to U.S. EPA, FULLY RELIABLE to PMRA, and as FULLY RELIABLE WITH RESTRICTION to APVMA. The study is classified as FULLY RELIABLE WITH RESTRICTION to APVMA because critical toxicity values could not be determined for the most sensitive dicot oilseed rape survivial endpoint.

Table 1. Summary of most sensitive parameters by species (lbs a.i./A and g a.i./ha).

Species	Endpoint	NOAEC	EC ₀₅	EC ₂₅	EC ₅₀		
Corn	None	0.319 / 357	>0.319 / >357	>0.319 / >357	>0.319 / >357		
Onion	Dry Weight	0.347 / 389	0.0056 / 6.23	0.0121 / 13.6	>0.347 / >389		
Ryegrass	Dry Weight	0.0127 / 14.2	0.0012 / 1.32	0.0062 / 6.97	0.0198 / 22.2		
Wheat	Dry Weight	0.111 / 124	0.0020 / 2.2	0.1189 / 133	>0.319 / >357		
Bean	Percent Survival	0.0127 / 14.2	0.0033 / 3.70	0.12 / 134	>0.319 / >357		
Cabbage	Percent Survival	0.000629 / 0.704	0.0001 / 0.1568	0.00097 / 1.09	0.0038 / 4.26		
Lettuce	Dry Weight	0.00392 / 4.39	0.0002 / 0.2456	0.00087 / 1.05	0.0052 / 5.82		
Oilseed Rape	Percent Survival	<0.00143 / <1.6	0.0002 / 0.2241	0.00087 / 1.05	0.0026 / 2.91		
Soybean	Dry Weight	0.111 / 124	0.0020 / 2.23	0.2069 / 232	>0.319 / >357		
Tomato	Dry Weight	0.00413 / 1.6	0.0004 / 0.4712	0.0019 / 2.12	0.0033 / 3.72		

I. MATERIALS AND METHODS

GUIDELINE FOLLOWED:

This study was conducted following guidelines outlined in the U.S. Environmental Protection Agency Series 850- Ecological Effects Test Guidelines (draft) OPPTS Number 850.4100 and 850.4225. The following deviations from OPPTS 850.4225 were noted:

- 1. The geographic location, depth of collection, CEC and moisture content of the test soil were not specified.
- 2. Due to an error, only three replicates were prepared for the lettuce negative control.
- 3. Due to significant inhibitions at all treatment levels relative to the negative control, the reviewer was unable to determine NOAEC, EC_{05} and EC_{25} values for oilseed rape survival.
- 4. The reviewer detected a significant difference between the two controls for wheat plant height, with the mean height of the plants in the adjuvant control 5.9% greater than the mean height in the negative control. Similarly, a significant difference was detected between the controls for lettuce plant height with mean height of the adjuvant control plants 27.6% greater than the mean height of the negative control plants. A significant difference was detected between the two controls for corn and tomato dry weight, with the mean weight 8.7 and 12.3% less in the adjuvant control relative to the negative

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

EPA MRID Number: 47127918

control. A significant difference was detected between the controls for tomato plant height with the mean plant height in the negative control 15.1% greater than the mean plant height in the adjuvant control.

The deviation associated with the inability to determine a critical toxicity NOAEC value for oilseed rape, the most sensitive dicot species, impact the acceptability of the study for APVMA. It should be noted, however, that U.S. EPA classifies the study as "acceptable" because an EC05 value was derived for the oilseed rape survival endpoint.

COMPLIANCE:

Signed and dated No Data Confidentiality, GLP and Quality Assurance statements were provided. This study was conducted in compliance with

Good Laboratory Practice Standards as published by the U.S.

Environmental Protection Agency in 40 CFR Part 160, 17 August 1989; OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17);

and Japan MAFF, 11 NohSan, Notification No. 6283, Agricultural

Production Bureau, October 1, 1999, with the following exception: periodic analyses of water and soil for potential contaminants were performed using

a certified laboratory and standard U.S. EPA analytical methods.

A. MATERIALS:

1. Test Material

BAS 800 02 H (formulation containing Saflufenacil)

Description:

A Liquid

Lot No./Batch No.:

1613-91 (Batch Number)

Purity:

12.0% (wt/wt)

Stability of compound

under test conditions:

Analytical recoveries of the spray solutions ranged from 81-128% of nominal. (OECD recommends chemical stability in water and light)

*

Storage conditions of test chemicals:

Stored at ambient conditions without exposure to sunlight.

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Table 2. Physical/chemical properties of BAS 800 02 H.

Parameter	Values	Comments
Water solubility at 20°C	Not Reported	
Vapor pressure	Not Reported	
UV absorption	Not Reported	
рКа	Not Reported	
Kow	Not Reported	

2. Test organism:

Monocotyledonous species: Corn (Zea mays, Family Poaceae, Mandan Bride), Onion (Allium cepa, Family Liliaceae, WI 301), Ryegrass (Lolium perenne, Family Poaceae, Manhattan 4) and Wheat (Triticum aestivum, Family Poaceae, Polk).; EPA recommends four monocots in two families, including corn.

Dicotyledonous species: Bean (*Phaseolus vulgaris*, Family Fabaceae, Red Kidney), Cabbage (*Brassica oleracea*, Family Brassicaceae, Late Flat Dutch), Lettuce (*Lactuca sativa*, Family Asteraceae, Buttercrunch), Oilseed Rape (*Brassica napus*, Family Brassicaceas, Dwarf Essex), Soybean (*Glycine max*, Family Fabaceae, Williams 82) and Tomato (*Lycopersicon esculentum*, Family Solanaceae, Rutgers); *EPA recommends six dicots in four families, including soybean and a root crop*.

OECD recommends a minimum of three species selected for testing, at least one from each of the following categories: Category 1: ryegrass, rice, oat, wheat, and sorghum; Category 2: mustard, rape, radish, turnip, and Chinese cabbage; Category 3: vetch, mung bean, red clover, fenugreek, lettuce, and cress.

Seed source: Corn, wheat and lettuce seeds were obtained from Johnny's Selected Seeds, Winslow, ME. Onion seeds were obtained from Wannamaker Seeds, St. Matthews, SC. Ryegrass, bean, cabbage and tomato seeds were obtained from Meyer Seed Co., Baltimore, MD. Oilseed rape seeds were obtained from Seedland Inc., Wellborn, FL. Soybean seeds were obtained from Missouri Foundation Seeds, Columbia, MO.

Prior seed treatment/sterilization: None reported Historical % germination of seed: 85-94% Seed storage, if any: No storage was reported

B. STUDY DESIGN:

1. Experimental Conditions

- a. Limit test: N/A- test was conducted under Tier II conditions.
- b. Range-finding study: No range-finding data were provided.
- c. Definitive Study

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

EPA MRID Number: 47127918

Parameters	Se	edling Emergence
· ·	Details	Remarks
		Criteria
Duration of the test	21 Days	
		Recommended test duration is 14-21 days.
		OECD recommends that the test be terminated no sooner than 14 days after 50 percent of the control seedlings have emerged
Number of seeds/plants/species/	10 seeds per replicate	
replicate		Ten seeds per replicate should be used.
		OECD recommends a minimum of five seeds planted in each replicate within 24 hours of incorporation
		of the test substance. All seeds of each species for each test should be of the same size class. The seed should not be imbibed.
Number of replicates Control:	4	Due to an error, only three replicates were prepared for the lettuce negative control.
Adjuvant control: Treated:	4 4/level	Four replicates per dose should be used.
		OECD recommends a minimum of four replicates per treatment

PMRA Submission Number: 2008-0431

Parameters	See	Seedling Emergence				
	Details	Remarks				
		Criteria				
Test concentrations (lb ai/A	Corn, Ryegrass, Wheat, Bean and					
or g ai/ha)	Soybean:					
Nominal:	0 (negative and adjuvant controls),					
	0.0044, 0.0132, 0.0396, 0.119 and	Five test concentrations should be used with a dose				
	0.357 lbs a.i./A (0 (controls), 4.94,	range of 2X or 3X progression				
	14.8, 44.4, 133, and 400 g a.i./ha)	OECD recommends three concentrations,				
		preferably with application rates equivalent to 0.0				
Measured:	<loq (controls),="" 0.00483,<="" td=""><td>(control), 1.0, 10.0 and 100 mg substance per kg of</td></loq>	(control), 1.0, 10.0 and 100 mg substance per kg of				
	0.0127, 0.0376, 0.111 and 0.319	oven-dried soil.				
	lbs a.i./A (<loq (controls),="" 5.41,<="" td=""><td></td></loq>					
	14.2, 42.1, 124, and 357 g a.i./ha)					
Nominal:	Cabbage and Lettuce:					
	0 (negative and adjuvant controls),					
	0.00049, 0.0015, 0.0044, 0.0132,					
	0.0396 and 0.119 lbs a.i./A (0					
	(controls), 0.549, 1.65, 4.94, 14.8,	1				
	44.4, and 133 g a.i./ha)					
Manager de	(I OO (comtrols) 0.000620					
Measured:	<loq (controls),="" 0.000629,<br="">0.00143, 0.00392, 0.0127, 0.0321</loq>					
	and 0.112 lbs a.i./A (<loq< td=""><td></td></loq<>					
	(controls), 0.704, 1.60, 4.39, 14.2,					
	35.9, and 125 g a.i./ha)					
	33.5, and 123 g u.i./ma/					
Nominal:	Onion:					
	0 (negative and adjuvant controls),					
	0.0015, 0.0044, 0.0132, 0.0396,					
	0.119 and 0.357 lbs a.i./A (0					
	(controls), 1.65, 4.94, 14.8, 44.4,					
	133, and 400 g a.i./ha)					
Measured:	<loq (controls),="" 0.00143,<="" td=""><td></td></loq>					
	0.00392, 0.0127, 0.0321, 0.112					
	and 0.347 lbs a.i./A (<loq< td=""><td></td></loq<>					
	(controls), 1.60, 4.39, 14.2, 35.9,					
	125, and 389 g a.i./ha)					
Nominal:	Oilseed Rape and Tomato:					
	0 (negative and adjuvant controls),					
	0.0015, 0.0044, 0.0132, 0.0396					
	and 0.119 lbs a.i./A (0 (controls),					

PMRA Submission Number: 2008-0431

EPA MRID Number: 47127918

Parameters	Seedling Emergence						
	Details	Remarks Criteria					
Measured: Method and interval of analytical verification	1.65, 4.94, 14.8, 44.4, and 133 g a.i./ha) <loq (<loq="" (controls),="" 0.00143,="" 0.00392,="" 0.0127,="" 0.0321="" 0.112="" 1.60,="" 125="" 14.2,="" 35.9,="" 4.39,="" a="" a.i.="" analyzed="" and="" application="" collected="" equipped="" g="" ha)="" hplc="" lbs="" prior="" samples="" th="" to="" using="" waters<="" were="" with=""><th></th></loq>						
LOQ: LOD:	486 variable wavelength detector. 1.20 µg a.i./mL 0.400 µg a.i./mL						
Adjuvant (type, percentage, if used)	Two components were used to prepare the adjuvant. First was ammonium sulfate (purity of 99.6%) and the second was Scoil Spray Adjuvant, containing methylated seed soil. The adjuvant spray mixture was prepared by diluting 40 g of ammonium sulfate and 20 mL of Scoil spray adjuvant to 2000 mL with osmosis-purified water. On June 28 and 29, 8.3319 g and 8.3331 of the test substance, respectively, were diluted to 500 mL with adjuvant control to prepare the highest nominal application rate (0.357 lbs a.i./A). The remaining treatment levels were prepared by proportionally diluting the stock solution.						
Test container (pot)							

PMRA Submission Number: 2008-0431

MRA Document ID:	1547203	EPA MRID Number: 47127918

Parameters	Seedling Emergence					
	Details	Remarks				
•		Criteria				
Size/Volume Material:	16 cm in diameter by 12 cm deep Plastic	Non-porous containers should be used. OECD recommends that non-porous plastic or				
(glass/polystyrene)		glazed pot be used.				
Growth facility	On-site greenhouse					
Method/depth of seeding	Corn, wheat, bean and soybean were planted to an approximate depth of 20 mm; the remaining species were planted at approximately 6 mm.					
Test material application Application time including the plant growth stage	Test material was applied to the soil surface on Day 0.					
Number of application Application interval	Single application N/A					
Method of application	DeVries Research Track Sprayer					
Details of soil used Geographic location Depth of soil collection Soil texture % sand % silt	Not Reported Not Reported Sandy Loam 75% 11%					
% clay pH: % organic carbon CEC Moisture at 1/3 atm (%)	14% 7.2 1.3% (organic matter content) Not Reported Not Reported	Soil mixes containing sandy loam, loam, or clay loam soil with no greater than 2% organic matter are preferable. Glass beads, rock wool, and 100% acid washed sand are not preferred. OECD prefers the soil to be sieved (0.5 cm) to remove coarse fragments. Carbon content should not exceed 1.5% (3% organic matter). Fine particles				
		(under 20um) makeup should be between 10 and 20%. The recommended pH is between 5.0 and 7.5.				

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Parameters	See	dling Emergence
	Details	Remarks
		Criteria
Details of nutrient medium, if used	N/A; a nutrient medium was not used	
Watering regime and schedules Water source/type: Volume applied:	Well water As needed	
Interval of application: Method of application:	As needed Sub-irrigation	EPA prefers that bottom watering be utilized for seedling emergence studies so that the chemical is not leached out of the soil during the test.
Any pest control method/fertilization, if used	A slow-release fertilized was added to provide nutrients essential for plant growth.	
Test conditions Temperature:	Corn, Ryegrass, Wheat, Bean and Soybean: 19.93-42.74°C	
Photoperiod: Light intensity and quality: Relative humidity:	16L:8D 12.7-14.8 moles PAR 23.73-92.20%	EPA prefers that the cold vs warm loving plants be tested in two separate groups to optimize plant growth.
Temperature: Photoperiod: Light intensity and quality: Relative humidity:	Onion, Cabbage, Lettuce, Oilseed Rape and Tomato: 19.93-36.24°C 16L:8D 12.7-14.8 moles PAR 23.73-92.20%	OECD prefers that the temperature, humidity and light conditions be suitable for maintaining normal growth of each species for the test period.
Reference chemical (if used) Name: Concentrations:	N/A N/A	A reference chemical was not used.
Other parameters, if any	None	

2. Observations:

Table 4: Observation Parameters - Seedling Emergence.

Parameters		Seedling Emergence
	Details	Remarks

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203	EPA MRID Number: 47127918	
Parameters measured (e.g., number of germinated seeds, emerged seedlings, plant height, dry weight or other endpoints)	-Emergence -Survival -Plant Height -Dry Weight -Phytotoxicity	
Measurement technique for each parameter	Emergence, survival and phytotoxicity were determined by visual assessment. Seedling height was measured with a ruler to the nearest whole centimeter from the surface of the soil to the apical meristem (tomato, soybean, bean) or to the tip of the tallest leaf (all other species). Seedlings were then clipped at soil level, the shoots of all living seedlings within a replicate were dried and weighed as a group.	Emergence was defined as the presence of visible plant tissue at the surface of the soil.
Observation intervals	Emergence was assessed on Days 7, 14 and 21. Survival, phytotoxicity, dry weight and plant height were determined at test termination.	
Other observations, if any	None Reported	
Were raw data included?	Yes	
Phytotoxicity rating system, if used	0, no effect; 10-30 slight effect (10- barely noticeable, 20- not apparently detrimental, 30- effect more pronounced); 40-60, moderate effect (40- moderate, recovery possible, 50-more lasting effect and recovery doubtful, 60- lasting effect and recovery doubtful); 70-90 severe effect (70- heavy injury w/ loss of leaves, 80- plant nearly	Rating scale adapted from: Frans, Robert E and Ronald E. Talbert. 1977. Design of Field Experiments and the Measurement and Analysis of Plant Responses. Pages 15-23 in B. Truelove, ed. Research Methods in Weed Science. Southern Weed Science Society, Auburn University, Alabama.

PMRA Submission Number: 2008- PMRA Document ID: 1547203	J431	EPA MRID Number: 47127918
1	destroyed w/ few surviving leaves, 90- occasional surviving leaves); 100, complete effect	

II. RESULTS and DISCUSSION:

A. INHIBITORY EFFECTS:

1. Seedling Emergence:

The reviewer's results indicated that corn and onion were the only species not exhibiting significant inhibitions based on dry weight. Corn, onion, wheat and bean exhibited no significant inhibitions based on plant height, and corn and wheat were the only two species not exhibiting significant inhibitions based on percent survival. The reviewer's results indicated that ryegrass was the most sensitive monocot, based on dry weight, with NOAEC, EC₀₅ EC₂₅, and EC₅₀ values of 0.0127, 0.0012, 0.0062, and 0.0198 lbs a.i./A, respectively (equivalent to 14.2, 1.32, 6.97, and 22.2 g a.i./ha, respectively) Oilseed rape was the most sensitive dicot, based on % survival, with NOAEC, EC₀₅, EC₂₅ and EC₅₀ values of <0.00143, 0.0002, 0.00087, and 0.0026 lbs a.i./A, respectively (equivalent to <1.6, 0.2241, 1.05, and 2.91 g a.i./ha, respectively).

All surviving wheat seedlings appeared normal and healthy at test termination. Slight necropsy was observed in two corn seedlings. Slight chlorosis and slight to moderate necrosis were observed for onion; however, these effects were sporadic and not considered to be treatment related. Slight to severe necrosis was observed throughout the three highest ryegrass treatment levels in a dose-dependent fashion. Slight to moderate leaf curl, slight stem curl and slight necrosis were observed at the highest bean treatment level, with the majority of the effects being restricted to one replicate. An additional bean seedling at the 0.0127 lbs a.i./A treatment level exhibited severe stem curl. Slight to severe necrosis, chlororis and leaf curl were observed throughout the cabbage treatment levels with severity and frequency increasing with application rate. Slight to moderate chlorosis and necrosis were observed in the lettuce treatment levels containing live seedlings. Oilseed rape seedlings were exhibiting slight to severe necrosis and moderate to severe color change on Day 21 in all treatment levels except the highest; the one surviving seedling at the highest level appeared normal and healthy. Soybean seedlings exhibited slight to moderate leaf curl, necrosis and stem curl, but the effects did not appear in a strong dose-dependent relationship. Tomato seedlings exhibited slight to severe chlorosis, slight leaf curl, slight to severe necrosis, slight stem curl and one seedling exhibited an unshed seed coat. Plant injury was assessed using the following rating scale: 0, no effect; 10-30 slight effect (10- barely noticeable, 20- not apparently detrimental, 30- effect more pronounced); 40-60, moderate effect (40-moderate, recovery possible, 50-more lasting effect and recovery doubtful, 60- lasting effect and recovery doubtful); 70-90 severe effect (70- heavy injury w/ loss of leaves, 80- plant nearly destroyed w/ few surviving leaves, 90-occasional surviving leaves); 100, complete effect. This scale was adapted from: Frans, Robert E and Ronald E. Talbert. 1977. Design of Field Experiments and the Measurement and Analysis of Plant Responses. Pages 15-23 in B. Truelove, ed. Research Methods in Weed Science. Southern Weed Science Society, Auburn University, Alabama.

B. REPORTED STATISTICS:

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Mean seedling emergence, survival, dry weight and height of the control and treatment groups were compared in the test with a Dunnett's t-test, using the DUNNETT option of the GLM (general linear model) procedure of SAS version 8. The negative and adjuvant control groups were compared in order to evaluate potential effects resulting from the adjuvant. Where no such effects were noted, the control groups were pooled for comparison to the treatment levels. Significance was determined at the level of 0.05. Additionally, test data were evaluated to determine the LOAEC and NOAEC for plant height, emergence, weight and survival. Dunnett's test was used to help establish these values by determining which treatment groups differed significantly from the control group.

Statistical analyses for species also included the determination of effect rates (ER estimates) and their confidence limits using the non-linear regression analysis of Bruce and Versteeg when reductions in test endpoints among one or more treatment groups were 25% or more relative to control means. Analyses were conducted using the NLIN procedure of SAS. The data for cabbage dry weight and soybean height were not conducive to analysis by non-linear regression, therefore ERx estimates were calculated using the ICPIN linear interpolation method.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 5: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ry for dry weigh	t (lbs a.i./A; b	ased on nomina	ıl concentra	tions; reported b	y the study	author)	
	g*	NOAEC	EC ₀₅	95%CI	EC ₂₅	95%CI	EC ₅₀	95%CI	r ²
Corn	1.29-1.37	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Onion	0.011-0.019	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Ryegrass	0.015-0.031	0.0132	N.R.	N.R.	0.0064	0.000088-0.47	0.21	0.015-2.9	0.85717
Wheat	0.155-0.209	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Bean	1.37-1.83	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Cabbage	0.188-0.548	0.0396	N.R.	N.R.	0.076	0.014-0.078	0.11	0.020-0.12	N.R.
Lettuce	0.007-0.2671	0.00049	N.R.	N.R.	0.00090	0.000051-0.016	0.0019	0.00023-0.016	0.86908
Oilseed Rape	0.618-1.382	0.119	N.R.	N.R.	>0.119	N/A	>0.119	N/A	N.R.
Soybean	0.96-1.20	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Tomato	0.192-0.269	0.0132	N.R.	N.R.	>0.0132	N/A	>0.0132	N/A	N.R.

^{*} range provided represents the range of the treatment means including controls

¹ value did not appear dose-responsive and was excluded from regression

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 5a: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ry for plant heig	ht (lbs a.i./A;	based on nomin	al concentra	ations; reported	by thet stu	dy author)	
	cm*	NOAEC	EC ₀₅	95%CI	EC ₂₅	95%CI	EC ₅₀	95%CI	r²
Corn	73.6-77.1	0.357	N.R.	N.R.	>0.357	N/A	. >0.357	N/A	N.R.
Onion	10.0-15.2	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Ryegrass	10.2-15.9	0.0132	N.R.	N.R.	0.048	0.0051-0.45	>0.357	N/A	0.89352
Wheat	36.8-41.3	0.119	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Bean	40.0-46.7	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Cabbage	9.3-16.5	0.0396	N.R.	N.R.	0.076	0.054-0.11	>0.119	N/A	0.93342
Lettuce	2.0-11.31	0.0044	N.R.	N.R.	0.0015	0.00013-0.017	0.0039	0.00080-0.019	0.93664
Oilseed Rape	13.7-25.7	0.119	N.R.	N.R.	>0.119	N/A	>0.119	N/A	N.R.
Soybean	29.0-39.4	0.119	N.R.	N.R.	0.33	0.14-0.35	>0.357	N/A	N.R.
Tomato	8.3-14.0	0.0044	N.R.	N.R.	0.0052	0.00069-0.039	>0.0132	N/A	0.89080

^{*} range provided represents the range of the treatment means including controls

¹ value did not appear dose-responsive and was excluded from regression

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 5b: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ry for survival (lbs a.i./A; base	ed on nominal o	concentration	s; reported by t	he study a	uthor)	
	%*	NOAEC	EC ₀₅	95%CI	EC ₂₅	95%CI	EC ₅₀	95%CI	r ²
Corn	100	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Onion	67.5-97.2	0.0396	N.R.	N.R.	0.022	0.0094-0.052	0.25	0.14-0.42	0.97394
Ryegrass	57.5-100	0.0396	N.R.	N.R.	0.076	0.0016-3.7	>0.357	N/A	0.67594
Wheat	96.9-100	0.357	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Bean	67.0-100	0.0132	N.R.	N.R.	0.053	0.015-0.19	>0.357	N/A	0.95768
Cabbage	9.1-100	0.00049	N.R.	N.R.	0.0012	0.00042-0.0036	0.0046	0.0022-0.010	0.96390
Lettuce	0-95.2	0.00049	N.R.	N.R.	0.00092	0.00051-0.0017	0.0018	0.0012-0.0028	0.97007
Oilseed Rape	3.6-97.5	0.0015	N.R.	N.R.	0.00088	0.00014-0.0055	0.0026	0.00073-0.0094	0.93861
Soybean	81.0-100	0.119	N.R.	N.R.	>0.357	N/A	>0.357	N/A	N.R.
Tomato	0-93.1	0.0015	N.R.	N.R.	0.0024	0.0012-0.0050	0.0047	0.0028-0.0078	0.99149

^{*} range provided represents the range of the treatment means including controls

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 5c: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa author) ¹	ry for seedling e	mergence at I	Day 21 (lbs a.i.//	A and g a.i./	A; based on nomi	inal conce	ntrations; repor	ted by the study
	%*	NOAEC	EC ₀₅	95%CI	EC ₂₅	95%CI	EC50	95%CI	r ²
Corn	90.0-97.5	0.357 (400)	N.R.	N.R.	>0.357 (>400)	N.A.	>0.357 (>400)	N.A.	N.R
Onion	47.5-82.5	0.0396 (44.4)	N.R.	N.R.	0.0448 (50.2)	0.0135-0.149 (15.1-166)	>0.357 (>400)	N.A.	0.93996
Ryegrass	85.0-95.0	0.357 (400)	N.R.	N.R.	>0.357 (>400)	N.A.	>0.357 (>400)	N.A.	N.R
Wheat	87.5-92.5	0.357 (400)	N.R.	N.R.	>0.357 (>400)	N.A.	>0.357 (>400)	N.A.	N.R
Bean	82.5-90.0	0.357 (400)	N.R.	N.R.	>0.357 (>400)	N.A.	>0.357 (>400)	N.A.	N.R
Cabbage	87.5-97.5	0.119 (133)	N.R.	N.R.	>0.119 (>133)	N.A.	>0.119 (>133)	N.A.	N.R.
Lettuce	2.5-77.5	0.0015 (1.65)	N.R.	N.R.	0.0015 (1.66)	1.85x10 ⁻⁴ -0.0119 (0.2069-13.3)	0.0053 (5.96)	0.0013-0.0219 (1.45-24.5)	0.88477
Oilseed Rape	70.0-95.0	0.0132 (14.8)	N.R.	N.R.	>0.119 (>133)	N.A.	>0.119 (>133)	N.A.	N.R.
Soybean	90.0-100.0	0.357 (400)	N.R.	N.R.	>0.357 (>400)	N.A.	>0.357 (>400)	N.A.	N.R
Tomato	42.5-82.5	0.0396 (44.4)	N.R.	N.R.	0.0251 (28.1)	0.0067-0.0933 (7.54-105)	>0.119 (>133)	N.A.	0.92227

¹ lbs a.i./A are presented first, followed by g a.i./ha in parentheses.

^{*} range provided represents the range of the treatment means excluding the controls.

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Mid-Stud	ly Emergen	ice- Day 7	(reported by	y the study	author)						
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
84.8 (55.0-100)	94.5 (90.0-97.5)	54.2 (35.0-70.0)	89.0 (82.5-95.0)	89.5 (85.0-92.5)	81.5 (75.0-87.5)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	78.5 (70.0-95.0)	89.0 (82.5-95.0)	66.5 (42.5-85.0)	83.8 (55.0-100)

provide the mean and range

Mid-Stud	ly Emergen	ice- Day 14	(reported l	by the stud	y author)						
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
89.3 (73.3-100)	94.5 (90.0-97.5)	67.1 (47.5-82.5)	89.5 (85.0-95.0)	90.5 (87.5-92.5)	83.0 (77.5-87.5)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	79.5 (70.0-95.0)	94.0 (90.0 - 97.5)	64.5 (42.5-82.5)	87.8 (60-100)

provide the mean and range

Emergen	ce- Day 21	(reported	by the study	author)							
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
89.6 (73.3-100)	94.5 (90.0-97.5)	67.1 (47.5-82.5)	89.5 (85.0-95.0)	90.5 (87.5-92.5)	86.5 (82.5-90.0)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	79.5 (70.0-95.0)	94.5 (90.0-100.0)	64.5 (42.5-82.5)	88.7 (60-100)

* provide the mean and range

Emergence values represent the mean (and range) % emergence from the treatment levels (excluding the controls). The mean (and range) of all appropriate species of the control and adjuvant control are reported separately in the respective columns.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Plant In	jury Inde	x (report	ed by the	study au	thor)						
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
0-21	0-4.3	0-100	0-77	0-13	0-59	0-100	0-100	0-100	0-39	0-100	0-25

Plant injury values represent the range of replicate means with the controls and treatment levels respectively. Plant Injury was assessed using the following rating scale: 0, no effect; 10-30 slight effect (10- barely noticeable, 20- not apparently detrimental, 30- effect more pronounced); 40-60, moderate effect (40-moderate, recovery possible, 50-more lasting effect and recovery doubtful, 60- lasting effect and recovery doubtful); 70-90 severe effect (70- heavy injury w/ loss of leaves, 80- plant nearly destroyed w/ few surviving leaves, 90-occasional surviving leaves); 100, complete effect. This scale was adapted from: Frans, Robert E and Ronald E. Talbert. 1977. Design of Field Experiments and the Measurement and Analysis of Plant Responses. Pages 15-23 in B. Truelove, ed. Research Methods in Weed Science. Southern Weed Science Society, Auburn University, Alabama.

C. VERIFICATION OF STATISTICAL RESULTS BY THE REVIEWER:

Statistical Method(s): Any species exhibiting an inhibition of ≥5% relative to the negative control based on % survival, dry weight or plant height was statistically analyzed. The toxicity values were visually determined when inhibitions did not exceed 5% for a given endpoint. Prior to determining the toxicity values, the replicate data from the negative and solvent controls were compared using a Student's t-test to determine if a significant difference existed. Regardless of the results, all subsequent analyses were conducted using the negative control only. The reviewer tested each data set for normality using the Chi-square and Shapiro-Wilks tests and for homogeneity of variance using the Hartley and Bartlett's tests. If the data met these assumptions of ANOVA, the NOAEC values for plant weight and survival were determined using the parametric Dunnett's test (or Bonferonni's test for unequal replicates) and Williams' test. If the data did not meet these assumptions, the NOAEC value was determined using the non-parametric Kruskal-Wallis test. In all cases, the reviewer also compared the dose-response pattern (as determined by the % inhibitions) to the output of the statistical tests to determine if biological significance existed in the absence of statistical significance. These analyses were conducted using Toxstat statistical software for plant height and survival endpoints. The reviewer then attempted to determine the ECx values, 95% confidence intervals and slopes using the probit analysis via Nuthatch statistical software. Treatment levels were only included for dry weight and plant height in the analyses if two or more replicates contained surviving seedlings; those treatment levels with only one viable replicate were excluded. All analyses were conducted using the measured application rates. It should be noted that statistical analysis of the seedling emergence endpoint is not normally conducted because seedling emergence is usually a less sensitive endpoint as compared to dry weight, plant height, and survival endpoints. Total dry weight was calculated by multiplying the reported average dry weight per living plant by the number of survivors in that pot. Hypothesis testing for the dry weight endpoint was conducted with Dunnett's test except in cases where the assumptions of normality and equal variances were not met. In these cases, Bonferroni's t-test was used. Point estimates were derived using linear interpolation. All dry weight statistical analysis and endpoints were derived using TOXCALC (v5.0.32; Tidepool Scientific Software, McKinleyville, CA).

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 6: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ry for dry weigh	t (lbs a.i./A ar	nd g a.i./ha; base	d on mean-i	measured conce	ntrations;	reported by the	reviewer	·) ¹
	g*	NOAEC	EC ₀₅	95%CI	EC ₂₅	95%CI	EC ₅₀	95%CI	Slope	Std Err
Corn	11.933-12.935	0.319 (357)	0.0376 (42.1)	N/A	>0.319 (>357)	N/A	>0.319 (>357)	N/A	N.D	N.D.
Onion	0.0603-0.1440	0.347 (389)	0.0056 (6.23)	<0.000-0.0103 (<0.000-11.5)	0.0121 (13.6)	<0.000-0.0309 (<0.000-34.5)	>0.347 (>389)	N/A	N.D.	N.D.
Ryegrass	0.0835-0.2225	0.0127 (14.2)	0.0012 (1.32)	5.4x10 ⁻⁶ -0.0236 (0.006-26.4)	0.0062 (6.97)	<0.000-0.0438 (<0.000-49.0)	0.0198 (22.2)	N.D.	N.D	N.D.
Wheat	1.3448-1.8723	0.111 (124)	0.0020 (2.2)	0.0001-0.1767 (0.06-198)	0.1189 (133)	N/A	>0.319 (>357)	N/A	N.D	N.D.
Bean	10.248-12.345	0.0376 (42.1)	0.0033 (3.75)	0.0014-0.0875 (1.62-98.0)	>0.319 (>357)	N/A	>0.319 (>357)	N/A	N.D.	N.D.
Cabbage	0.2850-2.9765	0.00143 (1.6)	0.0007 (0.836)	<0.000-0.0025 (<0.000-2.83)	0.0029 (3.25)	0.0017-0.0087 (1.89-9.75)	0.0166 (18.6)	0.0105-0.0225 (11.8-25.2)	N.D.	N.D.
Lettuce	0.007-0.8233	0.00392 (4.39)	0.0002 (0.2456)	<0.000-0.0014 (<0.000-1.58)	0.00087 (1.05)	<0.000-0.0082 (<0.000-9.14)	0.0052 (5.82)	<0.000-0.0094 (<0.000-10.5)	N.D.	N.D.
Oilseed Rape	0.7305-5,1945	0.00143 (1.6)	0.0016 (1.78)	<0.000-0.0020 (<0.000-2.27)	0.0027 (3.05)	0.0014-0.0041 (1.56-4.57)	0.0053 (5.94)	0.0012-0.0114 (1.34-12.8)	N.D	N.D.
Soybean	7.033-10.375	0.111 (124)	0.0020 (2.23)	8.9x10 ⁻⁴ -0.0699 (1.0-78.2)	0.2069 (232)	N/A	>0.319 (>357)	N/A	N.D	N.D.
Tomato	0.3777-1.4915	0.00143 (1.6)	0.0004 (0.4712)	<0.000-0.0024 (<0.000-2.73)	0.0019 (2.12)	<0.000-0.0032 (<0.000-3.60)	0.0033 (3.72)	0.0001-0.0075 (0.086-8.38)	N.D.	N.D.

¹ lbs a.i./A are presented first, followed by g a.i./ha in parentheses.

^{*} range provided represents the range of the treatment means including the controls

N/A- Not Applicable

N.R.- Not Reported

N.D.-Not Determined

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 6a: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ary for plant heig	ght (lbs a.i./A;	based on mean-	measured c	oncentrations; r	eported by	the reviewer)		
	cm*	NOAEC	EC ₀₅	95%CI	EC ₂₅ **	95%CI**	EC50**	95%CI**	Slope	Std Err
Corn	73.6-77.1	0.319	>0.319	N/A	>0.319	N/A	>0.319	N/A	N/A	N/A
Onion	10.0-15.2	0.347	N.D.	N.D.	>0.347	N/A	>0.347	N/A	N.D.	N.D.
Ryegrass	10.2-15.9	0.0127	0.0007	1x10 ⁻⁵ -0.05	0.073	0.014-0.37	>0.319 (1.8)	N/A (0.27-12)	0.482	0.158
Wheat	36.8-41.3	0.319	N.D.	N.D.	>0.319	N/À	>0.319	N/A	N.D.	N.D.
Bean	40.0-46.7	0.319	>0.319	N/A	>0.319	N/A	>0.319	N/A	0.230	1.53
Cabbage	9.3-16.5	0.0321	0.025	0.0056-0.11	0.071	0.040-0.12	>0.112 (0.15)	N/A (0.082-0.26)	2.14	1.04
Lettuce	2.0-11.31	0.000629	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Oilseed Rape	13.7-25.7	0.00392	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Soybean	29.0-39.4	0.0127	0.0003	4.9x10 ⁻⁹ -1.6	0.28	0.013-5.8	>0.319 (34)	N/A (0.037-3x10 ⁺⁴)	0.323	0.188
Tomato	8.3-14.0	0.00143	0.0003	3x10 ⁻⁶ -0.021	0.0030	0.00047-0.020	>0.0127 (0.017)	N/A (0.0035-0.094)	0.896	0.487

^{*} range provided represents the range of the treatment means including the controls.

^{**} Point estimates are also provided in parentheses for EC25 and EC50 values that exceed the highest test concentration, if appropriate (see Reviewer's comments).

¹ The treatment level yielding a mean of 11.7 g was considered to be an outlier and was excluded from statistical analysis.

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table 6b: Reported effect of BAS 800 02 H on Seedling Emergence

Species	Results summa	ary for survival (lbs a.i./A; bas	ed on mean-meas	sured conce	ntrations; repor	ted by the	reviewer)		
	%*	NOAEC	EC ₀₅	95%CI	EC ₂₅ **	95%CI**	EC ₅₀ **	95%CI**	Slope	Std Err
Corn	100	0.319	>0.319	N/A	>0.319	N/A	>0.319	N/A	N/A	N/A
Onion	67.5-97.2	0.0321	0.024	0.00021-2.9	0.23	0.050-1.1	>0.347 (1.1)	N/A (0.073-16)	0.997	0.871
Ryegrass	57.5-100	0.00483	8.6x10 ⁻⁵	5.8x10 ⁻⁹ -1.3	0.034	0.00094-1.2	>0.319 (2.1)	N/A (0.036-130)	0.374	0.214
Wheat	96.9-100	0.319	>0.319	N/A	>0.319	N/A	>0.319	N/A	N/A	N/A
Bean	67.0-100	0.0127	0.0033	2.7x10 ⁻⁵ -0.39	0.12	0.020-0.72	>0.319 (1.5)	N/A (0.17-13)	0.620	0.296
Cabbage	9.1-100	0.000629	0.00014	2x10 ⁻⁵ -0.0009	0.00097	0.00027-0.0035	0.0038	0.0015-0.0093	1.14	0.193
Lettuce	0-95.2	0.000629	0.0003	2x10 ⁻⁵ -0.0044	0.0012	0.00020-0.0065	0.0029	0.00092-0.0095	1.66	0.601
Oilseed Rape	3.6-97.5	<0.00143	0.0002	1.4x10 ⁻⁵ -0.0021	0.00087	0.0002-0.0048	0.0026	0.00078-0.0088	1.40	0.366
Soybean	81.0-100	0.111	N.D.	N.D.	>0.319	N/A	>0.319	N/A	N.D.	N.D.
Tomato	0-93.1	0.00143	0.0006	7.2x10 ⁻⁵ -0.0048	0.0021	0.00062-0.0075	0.0053	0.0025-0.011	1.73	0.573

^{*} range provided represents the range of the treatment means including the controls.

^{**} Point estimates are also provided in parentheses for EC25 and EC50 values that exceed the highest test concentration, if appropriate (see Reviewer's comments).

N/A- Not Applicable

N.R.- Not Reported

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Mid-Stud	ly Emergen	ice- Day 7	(reported by	y the review	wer)						
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
84.8 (55.0-100)	94.5 (90.0-97.5)	54.2 (35.0-70.0)	89.0 (82.5-95.0)	89.5 (85.0-92.5)	81.5 (75.0-87.5)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	78.5 (70.0-95.0)	89.0 (82.5-95.0)	66.5 (42.5-85.0)	83.8 (55.0-100)

* provide the mean and range

Mid-Stud	ly Emerger	ice- Day 14	(reported	by the revi	ewer)			- 1			
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
89.3 (73.3-100)	94.5 (90.0-97.5)	67.1 (47.5-82.5)	89.5 (85.0-95.0)	90.5 (87.5-92.5)	83.0 (77.5-87.5)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	79.5 (70.0-95.0) ·	94.0 (90.0-97.5)	64.5 (42.5-82.5)	87.8 (60-100)

provide the mean and range

Emergen	ce- Day 21	(reported l	by the revie	wer)							
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbage	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
89.6 (73.3-100)	94.5 (90.0-97.5)	67.1 (47.5-82.5)	89.5 (85.0-95.0)	90.5 (87.5-92.5)	86.5 (82.5-90.0)	93.8 (87.5-97.5)	33.3 (2.5-77.5)	79.5 (70.0-95.0)	94.5 (90.0-100.0)	64.5 (42.5-82.5)	88.7 (60-100)

* provide the mean and range

Emergence values represent the mean (and range) % emergence from the treatment levels (excluding the controls). The mean (and range) of all appropriate species of the control and adjuvant control are reported separately in the respective columns.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Plant In	Plant Injury Index (reported by the reviewer)										
Control	Corn	Onion	Ryegrass	Wheat	Bean	Cabbag e	Lettuce	Oilseed Rape	Soybean	Tomato	Adj control
0-21	0-4.3	0-100	0-77	0-13	0-59	0-100	0-100	0-100	0-39	0-100	0-25

Plant injury values represent the range of replicate means with the controls and treatment levels respectively. Plant Injury was assessed using the following rating scale: 0, no effect; 10-30 slight effect (10- barely noticeable, 20- not apparently detrimental, 30- effect more pronounced); 40-60, moderate effect (40-moderate, recovery possible, 50-more lasting effect and recovery doubtful, 60- lasting effect and recovery doubtful); 70-90 severe effect (70- heavy injury w/ loss of leaves, 80- plant nearly destroyed w/ few surviving leaves, 90-occasional surviving leaves); 100, complete effect. This scale was adapted from: Frans, Robert E and Ronald E. Talbert. 1977. Design of Field Experiments and the Measurement and Analysis of Plant Responses. Pages 15-23 in B. Truelove, ed. Research Methods in Weed Science. Southern Weed Science Society, Auburn University, Alabama.

Monocot

 EC_{05}/IC_{05} : 0.0012 lbs a.i./A (1.32 g a.i./ha) EC_{25}/IC_{25} : 0.0062 lbs a.i./A (6.97 g a.i./ha) EC_{50}/IC_{50} : 0.0198 lbs a.i./A (22.2 g a.i./ha)

NOAEC: 0.0127 lbs a.i./A (14.2 g a.i./ha)

Slope: N.D. Std err: N.D.

Most sensitive monocot: Ryegrass Most sensitive parameter: Dry Weight 95% C.I.: 5.4x10⁻⁶-0.0236 lbs a.i./A (0.006-26.4 g a.i./ha) 95% C.I.: <0.0000-0.0468 lbs a.i./A (<0.0000-49.0 g a.i./ha)

95% C.I.: N.D

<u>Dicot</u>

 EC_{05}/IC_{05} : 0.0002 lbs a.i./A (0.2241 g a.i./ha) EC_{25}/IC_{25} : 0.00087 lbs a.i./A (1.05 g a.i./ha) EC_{50}/IC_{50} : 0.0026 lbs a.i./A (2.91 g a.i./ha)

NOAEC: <0.00143 lbs a.i./A (<1.6 g a.i./ha)

Slope: 1.40 Std err: 0.366

Most sensitive dicot: Oilseed Rape

Most sensitive parameter: Percent Survival

95% C.I.: 1.4x10⁻⁵-0.0021 lbs a.i./A (0.0157-2.35 g a.i./ha) 95% C.I.: 0.00016-0.0048 lbs a.i./A (0.1792-5.38 g a.i./ha) 95% C.I.: 0.00078-0.0088 lbs a.i./A (0.8738-9.86 g a.i./ha)

D. STUDY DEFICIENCIES:

The deviation associated with the inability to determine a critical toxicity NOAEC value for oilseed rape, the most sensitive dicot species, impact the acceptability of the study for APVMA. It should be noted, however, that U.S. EPA classifies the study as "acceptable" because an EC05 value was derived for the oilseed rape survival endpoint.

E. REVIEWER'S COMMENTS:

The reviewer's results are based on the measured application rates and were determined by comparing the treatment data to the negative control only. The study authors determined all toxicity values using the nominal application rates and by comparing treatment data to the pooled control. The study authors derived all dry weight endpoints on a "per plant" rather than "per pot" basis; therefore, the reviewer recalculated all dry weight

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

endpoints by multiplying the reported average dry weight per living plant by the number of survivors in that pot. Aside from these differences, the reviewer similarly identified sensitivity of the same monocot and dicot species as the study authors. The reviewer's results are reported in the Executive Summary and Conclusions sections of this DER. In addition, given that PMRA derives a species sensitivity distribution of the EC_{50} values to estimate the regulatory endpoint, point estimates are also provided for EC_{50} (and EC_{25}) values that are greater than the highest test concentration when it is possible to derive a point estimate along with 95% confidence limits. If point estimates cannot be derived, the EC_{50} (and EC_{25}) value is reported as a "greater than" the highest test concentration.

The study authors reported that there were significant differences between the control group means for height of wheat, lettuce and tomato; however, no differences were apparent in weight, height, or survival and the difference was not considered to be an effect of the adjuvant.

The reviewer's analysis of onion survival did not detect any significant differences at any treatment level relative to the negative control. However, the reviewer felt that the 12.3 and 29.9% inhibitions at the measured 0.112 and 0.347 lbs a.i./A treatment levels, respectively, were biologically significant. Therefore, the reviewer visually determined the NOAEC value to be 0.0321 lbs a.i./A.

A significant inhibition in ryegrass % survival was detected at the 0.111 lbs a.i./A treatment level relative to the negative control. However,, the reviewer visually determined the survival NOAEC value to be 0.00483 lbs a.i./A based on the 7.5% inhibition at this level and the 19.8-42.5% inhibitions at the remaining treatment levels.

The reviewer's analysis of bean % survival did not detect any significant differences at the treatment levels relative to the negative control. However, the reviewer visually determined the NOAEC value to be 0.0127 lbs a.i./A based on the 6.3% inhibition at this level and the inhibitions of 13.9-33.0% at the 0.0376-0.319 lbs a.i./A treatment levels.

The reviewer's non-parametric analysis for cabbage plant height was unable to detect any significant differences at any treatment level; therefore, the reviewer visually determined the NOAEC value to be 0.0321 lbs a.i./A based on the observed % inhibitions. The reviewer also visually determined the NOAEC value for cabbage survival to be 0.000629 lbs a.i./A based on the 0% inhibition at this level, relative to the negative control, and the ≥21.3% inhibitions at the remaining treatment levels.

The reviewer was unable to determine the ECx values for lettuce plant height. The two highest treatment levels (0.0321 and 0.112 lbs a.i./A) were excluded from analyses because survival was 0% in all replicates in which emergence occurred, the 0.0127 lbs a.i./A treatment level was excluded due to only one replicate containing surviving seedlings, and the 0.00392 lbs a.i./A treatment level was excluded because the value did not appear dose-responsive and was identified as an outlier by the study authors. The remaining two treatment levels (0.000629 and 0.00143 lbs a.i./A) did not exhibit a clear dose-response pattern and the probit analysis was considered to be an unsuitable model due to the lack of three or more distinct isotone means.

The reviewer was unable to determine the ECx values for oilseed rape plant height due to the lack of three or more distinct isotone means. However, the reviewer was able to visually determine the NOAEC value to be 0.00392 lbs a.i./A based on the -6.5 and -26.7% inhibitions at the 0.00143 and 0.00392 lbs a.i./A treatment levels, respectively, and the 32.8% inhibition at the 0.0127 lbs a.i./A treatment level. The NOAEC for oilseed rape % survival of <0.00143 lbs a.i./A was visually determined based on a 13.6% inhibition of survival at the lowest treatment level.

The in-life portion of the definitive seedling emergence test with corn, ryegrass, wheat, bean and soybean was

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

conducted from June 28 to July 19, 2007 and with cabbage, oilseed rape, onion, lettuce and tomato from June 29 to July 20, 2007.

F. CONCLUSIONS:

This toxicity study is classified as ACCEPTABLE by U.S. EPA, FULLY RELIABLE by PMRA, and RELIABLE WITH RESTRICTIONS by APVMA. Ryegrass was the most sensitive monocot, based on dry weight, with NOAEC, EC $_{05}$ EC $_{25}$, and EC $_{50}$ values of 0.0127, 0.0012, 0.0062, and 0.0198 lbs a.i./A, respectively (equivalent to 14.2, 1.32, 6.97, and 22.2 g a.i./ha, respectively) Oilseed rape was the most sensitive dicot, based on % survival, with NOAEC, EC $_{05}$, EC $_{25}$ and EC $_{50}$ values of <0.00143, 0.0002, 0.00087, and 0.0026 lbs a.i./A, respectively (equivalent to <1.6, 0.2241, 1.05, and 2.91 g a.i./ha, respectively).

Most sensitive monocot and EC₂₅: Ryegrass (Dry Weight), 0.0062 lbs a.i./A (6.97 g a.i./ha) Most sensitive dicot and EC₂₅: Oilseed Rape (Percent Survival), 0.00087 lbs a.i./A (1.05 g a.i./ha)

III. REFERENCES:

- U.S. Environmental Protection Agency. 1996. Series 850- Ecological Effects Test Guidelines (*draft*), OPPTS Number 850.4100: Terrestrial Plant Toxicity, Tier I (Seedling Emergence).
- U.S. Environmental Protection Agency. 1996. Series 850- Ecological Effects Test Guidelines (*draft*), OPPTS Number 850.4225: Terrestrial Plant Toxicity, Tier II (Seedling Emergence).
- Frans, Robert E. and Ronald E. Talbert. 1977. Design of Field Experiments and the Measurement and Analysis of Plant Responses. Pages 15-23 in B. Truelove, ed. Research Methods in Weed Science. Southern Weed Science Society, Auburn University, Alabama.
- SAS Institute, Inc. 1999. SAS Proprietary Software Version 8, Cary, NC, SAS Institute, Inc.
- Bruce, Robert D. and Donald J. Versteeg. 1992. A Statistical Procedure for Modeling Continuous Data. Environmental Toxicology and Chemistry, 11: 1485-1494.
- Norberg-King, T.J. 1993. A Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach. Version 2.0. U.S. Environmental Protection Agency. National Effluent Toxicity Assessment Center, Duluth, Minnesota. Technical Report 03-93.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

APPENDIX I. OUTPUT OF REVIEWER'S STATISTICAL VERIFICATION:

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

Calculated Chi-Square goodness of fit test statistic = 4.8872 Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

D = 73.162

W = 0.957

Critical W (P = 0.05) (n = 27) = 0.923Critical W (P = 0.01) (n = 27) = 0.894

Data PASS normality test at P=0.01 level. Continue analysis.

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 4.52 Closest, conservative, Table H statistic = 216.0 (alpha = 0.01)

Used for Table H ==> R (# groups) \approx 7, df (# reps-1) = 3 Actual values ==> R (# groups) \approx 7, df (# avg reps-1) = 2.86 (average df used)

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 1.76
Table Chi-square value = 16.81 (alpha = 0.01)
Table Chi-square value = 12.59 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 2.86 Used for Chi-square table value ==> df (#groups-1) = 6

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is

used to calculate the B statistic (see above).

Onion plant height (cm), Day 21; lbs a.i./A

File: 7918nh Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	6	74.252	12.375	3.383
Within (Error)	20	73.163	3.658	
Total	26	147.414		

Critical F value = 2.60 (0.05, 6, 20)Since F > Critical F REJECT Ho: All groups equal

Onion plant height (cm), Day 21; lbs a.i./A

File: 7918nh Transform: NO TRANSFORMATION

Ε	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho: Contro	l <treatm< th=""><th>ent</th></treatm<>	ent
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	sig
1 2 3 4 5 6	neg control 0.00143 0.00392 0.0127 0.0321 0.112 0.347	12.300 15.200 13.925 13.900 11.375 9.975 13.100	12.300 15.200 13.925 13.900 11.375 9.975 13.100	-2.144 -1.202 -1.183 0.684 1.719	

Bonferroni T table value = 2.61 (1 Tailed Value, P=0.05, df=20,6)

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	neg control	4			
2	0.00143	4	3.534	28.7	-2.900
. 3	0.00392	4	3.534	28.7	-1.625
4 .	0.0127	4	3.534	28.7	-1.600
5	0.0321	4	3.534	28.7	0.925
6	0.112	4	3.534	28.7	2.325
7	0.347	3	3.817	31.0	-0.800

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP.	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	12.300	12.300	12.300
2	0.00143	4	15.200	15.200	12.875
3	0.00392	4	13.925	13.925	12.875
4	0.0127	4	13.900	13.900	12.875
5	0.0321	4	11.375	11.375	12.875
6	0.112	4	9.975	9.975	12.875
7	0.347	3	13.100	13.100	13.100

Onion plant height (cm), Day 21; lbs a.i./A File: 7918nh Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED	CALC.	SIG	TABLE	DEGREES OF
	MEAN	WILLIAMS	P=.05	WILLIAMS	FREEDOM
neg control 0.00143 0.00392 0.0127 0.0321 0.112 0.347	12.300 12.875 12.875 12.875 12.875 12.875 13.100	0.425 0.425 0.425 0.425 0.425 0.425		1.72 1.81 1.83 1.85 1.86 1.86	k= 1, v=20 k= 2, v=20 k= 3, v=20 k= 4, v=20 k= 5, v=20 k= 6, v=20

s = 1.913

Note: df used for table values are approximate when v > 20.

Onion % survival, Day 21; lbs a.i./A

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203 EPA MRID Number: 47127918 File: 7918ns Transform: NO TRANSFORM t-test of Solvent and Blank Controls Ho: GRP1 MEAN = GRP2 MEAN GRP1 (SOLVENT CRTL) MEAN = 89.1000 CALCULATED t VALUE = -1.6342 GRP2 (BLANK CRTL) MEAN = 97.2250 DEGREES OF FREEDOM = 6 DIFFERENCE IN MEANS = -8.1250 TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 Onion % survival, Day 21; lbs a.i./A File: 7918ns Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 1.876 6.776 0 8 10.696 EXPECTED 6.776 1.876 OBSERVED 0 12 Calculated Chi-Square goodness of fit test statistic = 4.3532 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. Onion % survival, Day 21; lbs a.i./A Transform: NO TRANSFORMATION File: 7918ns Shapiro Wilks test for normality D = 9499.992W = 0.894Critical W (P = 0.05) (n = 28) = 0.924Critical W (P = 0.01) (n = 28) = 0.896Data FAIL normality test. Try another transformation. Warning - The two homogeneity tests are sensitive to non-normal data and should not be performed. Onion % survival, Day 21; lbs a.i./A File: 7918ns Transform: NO TRANSFORMATION Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 217.79 Closest, conservative, Table H statistic = 216.0 (alpha = 0.01)

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Used for Table H ==> R (# groups) = 7, Actual values ==> R (# groups) = 7, df (# reps-1) = 3 df (# avg reps-1) = 3.00

Data FAIL homogeneity test. Try another transformation.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Onion % survival, Day 21; lbs a.i./A

File: 7918ns Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 22.01 Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.00

Used for Chi-square table value ==> df (#groups-1) = 6

Data FAIL homogeneity test at 0.01 level. Try another transformation.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Onion % survival, Day 21; lbs a.i./A

File: 7918ns Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	neg control	89.100	89.100	63.500
2	0.00143	94.450	94.450	76.500
3 ,	0.00392	90.975	90.975	69.000
4	0.0127	87.700	87.700	56.500
5	0.0321	84.125	84.125	45.000
6	0.112	78.125	78.125	45.000
7	0.347	62.500	62.500	50.500

Calculated H Value = 3.462 Critical H Value Table = 12.590 Since Calc H < Crit H FAIL TO REJECT Ho: All groups are equal.

Onion % survival, Day 21; lbs a.i./A

File: 7918ns Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2

EPA MRID Number: 47127918

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

						GF	2OU	Ρ		
		TRANSFORMED	ORIGINAL	0	0	0	0	0	0 0	
GROUP	IDENTIFICATION	MEAN	MEAN	7	6	5	4	1	3 2	
				-	-	-	-	-	<u> </u>	
7	0.347	62.500	62.500	\						
6	0.112	78.125	78.125		\					
5	0.0321	84.125	84.125		٠.	\.				
4	0.0127	87.700	87.700				1			
1	neg control	89.100	89.100					\		
3	0.00392	90.975	90.975							
2	0.00143	94.450	94.450						. \	
				. – – -						
* = si	qnificant differ	rence (p=0.05	5)		. =	= r	10	si	gnificant difference	
	q value (0.05,7)	-		SI	I =				669	
—	TG0									
ESCIMa	tes of EC%									

Parameter	Estimate	95% Bou	-	Std.Err.	Lower Bound	
Farameter	ESCIMACC	Lower	Upper	Bed. Bl.	/Estimate	
EC5	0.024	0.00021	2.9	1.0	0.0085	
EC10	0.056	0.0020	1.6	0.71	0.035	
EC25	0.23	0.050	1.1	0.32	0,22	
EC50	1.1	0.073	16.	0.57	0.068	

Slope = 0.997 Std.Err. = 0.871

Goodness of fit: p = 1.0 based on DF= 4.0

7918NS: Onion % survival, Day 21; lbs a.i./A ______

Observed vs. Predicted Treatment Group Means

______ Dose #Reps. Obs. Pred. Obs. Pred. %Change Mean Mean -Pred. %Control
 4.00
 89.1
 91.3
 -2.23
 100.

 4.00
 94.5
 91.1
 3.31
 99.8

 4.00
 91.0
 90.6
 0.327
 99.3

 4.00
 87.7
 88.9
 -1.16
 97.3

 4.00
 84.1
 85.5
 -1.40
 93.6

 4.00
 78.1
 76.5
 1.63
 83.8

 4.00
 62.5
 63.0
 -0.482
 69.0
 0.00 0.00 0.203 0.00143 0.00392 0.742 0.0127 2.70 6.35 0.0321 0.112 16.2 31.0

!!!Warning: EC50 not bracketed by doses evaluated.

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORM

0.347

t-test of Solvent and Bla	ank Controls	HO:GRP1 MEAN = GRP2 MEAN
GRP1 (SOLVENT CRTL) MEAN = GRP2 (BLANK CRTL) MEAN = GIFFERENCE IN MEANS =	16.6750 DEGREES OF	D t VALUE = -1.5331 F FREEDOM = 6
TABLE t VALUE (0.05 (2), 6) = 2 TABLE t VALUE (0.01 (2), 6) = 3	5	nt difference at alpha=0.05 nt difference at alpha=0.01

Ryegrass plant height (cm), Day 21; lbs a.i./A

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203	EPA MRID Number: 47127918

File: 7918gh Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

Calculated Chi-Square goodness of fit test statistic = 8.1636 Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

D = 42.707

W = 0.920

Critical W (P = 0.05) (n = 24) = 0.916 Critical W (P = 0.01) (n = 24) = 0.884

Data PASS normality test at P=0.01 level. Continue analysis.

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 5.11 Closest, conservative, Table H statistic = 184.0 (alpha = 0.01)

Used for Table H ==> R (# groups) = 6, df (# reps-1) = 3 Actual values ==> R (# groups) = 6, df (# avg reps-1) = 3.00

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Ryegrass plant height (cm), Day 21; lbs a.i./A

PMRA Submission Number: 2008-0431

EPA MRID Number: 47127918 PMRA Document ID: 1547203

Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 2.48

Table Chi-square value = 15.09 (alpha = 0.01)
Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.00 Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	5	88.932	17.786	7.495
Within (Error)	18	42.707	2.373	
Total	23	131.640		

Critical F value = 2.77 (0.05, 5, 18)

Since F > Critical F REJECT Ho: All groups equal

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

DUNNETTS TEST	 TABLE 1	OF	2			Ho:Control	l <trea< th=""><th>tment</th><th>:</th></trea<>	tment	:
	 			- -					
	TRA	NSF	ORME:	D	MEAN	CALCULATED	IN		

GROUP	IDENTIFICATION	TRANSFORMED MEAN	ORIGINAL UNITS	T STAT	SIG
1	neg control	15.225	15.225		
2	0.00483	14.300	14.300	0.849	
3	0.0127	13.900	13.900	1.216	
4	0.0376	11.400	11.400	3.512	*
5	0.111	10.250	10.250	4.567	*
6	0.319	10.650	10.650	4.200	ຸ*

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

PMRA Document ID: 1547203 EPA MRID Number: 4712791									
	DUNNETTS TEST - '	TABLE 2 OF	2 Ho:	Ho: Control <treatment< td=""></treatment<>					
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL				
1	neg control	4	**						
2	0.00483	4	2.625	17.2	0.925				
3	0.0127	4	2.625	17.2	1.325				
4	0.0376	4	2.625	17.2	3.825				
5	0.111	4	2.625	17.2	4.975				
6	0.319	4	2.625	17.2	4.575				

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	15.225	15.225	15.225
2	0.00483	4	14.300	14.300	14.300
3	0.0127	4	13.900	13.900	13.900
4	0.0376	4	11.400	11.400	11.400
5	0.111	4	10.250	10.250	10.450
6	0.319	4	10.650	10.650	10.450

Ryegrass plant height (cm), Day 21; lbs a.i./A File: 7918gh Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control	15.225				
0.00483	14.300	0.849		1.73	k = 1, v = 18
0.0127	13.900	1.217		1.82	k = 2, v = 18
0.0376	11.400	3.512	*	1.85	k = 3, v = 18
0.111	10.450	4.384	. *	1.86	k = 4, v = 18
0.319	10.450	4.384	*	1.87	k= 5, v=18

s = 1.540

Note: df used for table values are approximate when $v\,>\,20\,.$

Estimates of EC%

	- <i></i>					
Parameter Estimate		95% Bounds		Std.Err.	Lower Bound	
		Lower	Upper		/Estimate	
EC5	0.00071	1.0E-05	0.050	0.89	0.014	
EC10	0.0040	0.0001.7	0.095	0.66	0.043	
EC25	0.073	0.014	0.37	0.34	0.20	
EC50	1.8	0.27	12.	0.40	0.15	

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Slope = 0.482 Std.Err. ≈ 0.158

Goodness of fit: p = 0.18 based on DF= 3.0 18.

7918GH: Ryegrass plant height (cm), Day 21; lbs a.i./A

Observed vs. Predicted Treatment Group Means

			_				
Dose	#Reps.	Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change	
0.00	4.00	15.2	15.4	-0.224	100.	0.00	
0.00483	4.00	14.3	13.8	0.499	89.3	10.7	
0.0127	4.00	13.9	13.2	0.749	85.1	14.9	
0.0376	4.00	11.4	12.2	-0.841	79.2	20.8	
0.111	4.00	10.3	11.1	-0.899	72.2	27.8	
0.319	4.00	10.7	9.93	0.715	64.3	35.7	

!!!Warning: EC5 not bracketed by doses evaluated.

!!!Warning: EC10 not bracketed by doses evaluated.

!!!Warning: EC50 not bracketed by doses evaluated.

Ryegrass % survival, Day 21; lbs a.i./A File: 7918gs Transform: NO TRANSFORM

t-test of Solvent and Blank Controls Ho:GRP1 MEAN = GRP2 MEAN

GRP1 (SOLVENT CRTL) MEAN = 100.0000 CALCULATED t VALUE = 1.0000
GRP2 (BLANK CRTL) MEAN = 97.5000 DEGREES OF FREEDOM = 6
DIFFERENCE IN MEANS = 2.5000

DIFFERENCE IN MEANS = 2.5000

TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01

Ryegrass % survival, Day 21; lbs a.i./A File: 7918qs Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

Calculated Chi-Square goodness of fit test statistic = 4.9364

Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Data PASS HOLIMATITY CEST. CONTINUE analysis.

Ryegrass % survival, Day 21; lbs a.i./A

File: 7918qs Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Shapiro Wilks test for normality

D = 4625.483 W = 0.927

Critical W (P = 0.05) (n = 24) = 0.916

Critical W (P = 0.01) (n = 24) = 0.884

Data PASS normality test at P=0.01 level. Continue analysis.

Ryegrass % survival, Day 21; lbs a.i./A

File: 7918gs Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

Ryegrass % survival, Day 21; lbs a.i./A

File: 7918gs Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	neg control	100.000	100.000	84.000
2	0.00483	92.500	92.500	69.000
3	0.0127	73.425	73.425	38.000
4	0.0376	80.225	80.225	49.000
5	0.111	57.500	57.500	24.000
6	0.319	69.175	69.175	36.000

Calculated H Value = 13.056 Critical H Value Table = 11.070 Since Calc H > Crit H REJECT Ho:All groups are equal.

Ryegrass % survival, Day 21; lbs a.i./A

File: 7918gs Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2

GRO

TRANSFORMED ORIGINAL 0 0 0 0 0 0 GROUP IDENTIFICATION MEAN MEAN 5 6 3 4 2 1

	nission Number ment ID: 1547				EPA	MRID Num	ber: 471	27918
5	0.111	57.500	57.5	00 \		IVERTED I VOID		27/210
6	0.319	69.175	69.1	75 . \				
3	0.0127	73.425	73.4	25 \				*
4		80.225			\			
2	0.00483	92.500	92.5	00	. \			
1 r	neg control	100.000	100.0	00 *	\			
	icant differ lue (0.05,6)	rence (p=0.05) = 2.936		. = : SE =		cant diff	erence	
Estimates o	of EC%							
Darameter		95% Bounds		Std Frr	Lower Ro	ound		
Tarameter		Lower U		DCG.BII.	/Estimat			
EC5		5.8E-09		2.0	6.8E-05			
EC10		6.5E-07		1.5	0.00081			
EC25		0.00094		0.75	0.028			
EC50	2.1	0.036 1.	3E+02	0.85	0.017			
S	lope = 0.	374 Std.Err.	= 0	.214				
Goodness of	f fit: p =	0.24 bas	ed on D	F=	3.0	18.		
7918GS : Ry	yegrass % su	rvival, Day 2	1; lbs	a.i./A				
Observed vs	s. Predicted	l Treatment Gr	oup Mea	ns				
Dose	#Reps.		red. ean		Pred. %Control	%Change		

Dose	#Reps.	Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change
0.00	4.00	100.	101.	-0.904	100.	0.00
0.00483	4.00	92.5	84.6	7.86	83.9	16.1
0.0127	4.00	73.4	80.5	-7.04	79.7	20.3
0.0376	4.00	80.2	75.1	5.14	74.4	25.6
0.111	4.00	57.5	69.1	-11.6	68.4	31.6
0.319	4.00	69.2	62.7	6.50	62.1	37.9

!!!Warning: EC5 not bracketed by doses evaluated.

!!!Warning: EC10 not bracketed by doses evaluated.

!!!Warning: EC50 not bracketed by doses evaluated.

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

File: 7918wh

t-test of Solvent	and B	lank Contro	ols ·	Ho:GRP1 MEA	AN = GR	P2 MEAN	
GRP1 (SOLVENT CRTL) MEAN GRP2 (BLANK CRTL) MEAN DIFFERENCE IN MEANS	=	38.7750 41.0750 -2.3000		O t VALUE = F FREEDOM =	-5. 6	9140	
TABLE t VALUE (0.05 (2), TABLE t VALUE (0.01 (2),			SIGNIFICANT SIGNIFICANT		_		
Wheat plant height (cm),	Day 2	1: lbs a.i.	/A				

Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431
PMRA Document ID: 1547203

	Number:	

NTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
XPECTED BSERVED	1.608	5.808	9.168 9	5.808 8	1.608
		goodness of fit (alpha = 0.01)	test statistic = 13.277	= 4.2910	
	neight (cm)	t. Continue and , Day 21; lbs a sform: NO TRAN	a.i./A		
hapiro Wilks	•		SPORMATION		
0 = 76.115 $0 = 0.925$					
		(n = 24) = 0.916 (n = 24) = 0.884			
ata PASS noi	rmality tes	st at P=0.01 le	vel. Continue an	alysis.	
heat plant l ile: 7918wh		, Day 21; lbs a			
artley test	for homoge	eneity of varia	nce 		· · · · · · · · · · · · · · · · · · ·
		(max Var/min Varable H statis		lpha = 0.01)	
			= 6, df (# = 6, df (#	reps-1) = avg reps-1) =	3

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Bartletts test for homogeneity of variance

Calculated B statistic = 11.45

Table Chi-square value = 15.09 (alpha = 0.01) Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.00Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	5	62.510	12.502	2.956
Within (Error)	18	76.115	4.229	
Total	23	138.625		
	- 			

Critical F value = 2.77 (0.05,5,18) Since F > Critical F REJECT Ho:All groups equal

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	38.775	38.775		
2	0.00483	40.100	40.100	-0.911	
3	0.0127	41.275	41.275	-1.719	
4	0.0376	40.950	40.950	-1.496	
5	0.111	41.100	41.100	-1.599	
. 6	0.319	36.750	36.750	1.393	

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

DUNNETTS TEST - TABLE 2 OF 2

Ho: Control < Treatment

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203	EPA MRID Number: 47127918

GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	neq control	4			
2	0.00483	4	3.504	9.0	-1.325
3	0.0127	4	3.504	9.0	-2.500
4	0.0376	4	3.504	9.0	-2.175
5	0.111	4	3.504	9.0	-2.325
6	0.319	4	3.504	9.0	2.025

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

WILLIAMS	TEST	(Isotonic	regression	model)	TABLE	1	OF	2
----------	------	-----------	------------	--------	-------	---	----	---

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1 2 3 4	neg control 0.00483 0.0127 0.0376	4 4 4 4	38.775 40.100 41.275 40.950	38.775 40.100 41.275 40.950	40.440 40.440 40.440 40.440
5	0.111 0.319	4 4	41.100 36.750	41.100 36.750	40.440

Wheat plant height (cm), Day 21; lbs a.i./A File: 7918wh Transform: NO TRANSFORM

WILLIAMS '	TEST	Isotonic	regression	model)	TABLE	2 (OF	2

IDENTIFICATION MEAN WILLIAMS P=.05 WILLIAMS FREED			. 	 	
	IDENTIFICATION				DEGREES OF FREEDOM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0127 0.0376 0.111	40.440 40.440 40.440	1.145 1.145 1.145	1.82 1.85 1.86	k= 1, v=18 k= 2, v=18 k= 3, v=18 k= 4, v=18 k= 5, v=18

s = 2.056

Note: df used for table values are approximate when v > 20.

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORM

t-test of	Solvent	and	Blank Control	s	Ho:GRP1	MEAN =	GRP2 MEA	7/1
(SOLVENT C	•		44.6500	CALCULATE			0.5374	
(BLANK CRI RENCE IN M			40.0000 4.6500	DEGREES O	F FREEDOM	1 =	. 6	

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203 **EPA MRID Number: 47127918** TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 EXPECTED 1.608 OBSERVED 0 9.168 5.808 5.808 1.608

Calculated Chi-Square goodness of fit test statistic = 4.9797 Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

D = 2274.140

W = 0.953

Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884.

Data PASS normality test at P=0.01 level. Continue analysis.

Bean plant height (cm), Day 21; lbs a.i./A Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance

Calculated H statistic (max Var/min Var) = 10.43 Closest, conservative, Table H statistic = 184.0 (alpha = 0.01)

R (# groups) = 6, df (# reps-1) = R (# groups) = 6, df (# avg reps-1) = Used for Table H ==> Actual values ==>

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 4.28

Table Chi-square value = 15.09 (alpha = 0.01)

Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.0 Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Bean plant height (cm), Day 21; lbs a.i./A

Transform: NO TRANSFORMATION

ANOVA TABLE

		*			
SOURCE	DF	SS	MS	F	
Between	5	109.553	21.911	0.173	
Within (Error)	18	2274.140	126.341		ļ
Total	23	2383.693			

Critical F value = 2.77 (0.05, 5, 18)

Since F < Critical F FAIL TO REJECT Ho: All groups equal

Bean plant height (cm), Day 21; lbs a.i./A

File: 7918bh Transform: NO TRANSFORMATION

	DUNNETTS TEST - T	ABLE 1 OF 2	Ho:Control <tr< th=""><th>eatment</th><th></th></tr<>	eatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	44.650	44.650		
2	0.00483	44.500	44.500	0.019	
3	0.0127	40.025	40.025	0.582	
4	0.0376	46.675	46.675	-0.255	
5	0.111	42.825	42.825	0.230	
6	0.319	41.925	41.925	0.343	
					

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

- EPA MRID Number: 47127918

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION

	DUNNETTS TEST - 7	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	neg control	-			
2	0.00483	4	19.155	42.9	0.150
3	0.0127	4	19.155	42.9	4.625
4	0.0376	4	19.155	42.9	-2.025
5	0.111	4	19.155	42.9	1.825
6	0.319	4	19.155	42.9	2.725

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP			ORIGINAL	TRANSFORMED	ISOTONIZED
	IDENTIFICATION	N	MEAN	MEAN	MEAN
1	neg control	4	44.650	44.650	44.650
2	0.00483	4	44.500	44.500	44.500
3, .	0.0127	4	40.025	40.025	43.350
4	0.0376	4	46.675	46.675	43.350
5	0.111	4	42.825	42.825	42.825
6	0.319	4	41.925	41.925	41.925

Bean plant height (cm), Day 21; lbs a.i./A File: 7918bh Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 O	F 2
IDENTIFICATION	ISOTONIZED MEAN	CALC, WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control 0.00483 0.0127 0.0376 0.111 0.319	44.650 44.500 43.350 43.350 42.825 41.925	0.019 0.164 0.164 0.230 0.343		1.73 1.82 1.85 1.86 1.87	k= 1, v=18 k= 2, v=18 k= 3, v=18 k= 4, v=18 k= 5, v=18

s = 11.240

Note: df used for table values are approximate when v > 20.

Estimates of EC%

 Parameter
 Estimate
 95% Bounds
 Std.Err.
 Lower Bound

 Lower
 Upper
 /Estimate

 EC5
 0.53
 9.2E-16
 3.1E+14
 7.1
 1.7E-15

	ission Number: nent ID: 15472					MRID Num	ber: 471	279
C10		1.4E-28 2.			7.1E-30			
C25	8.9E+03	2.0E-60 4. 1.5E-97 4.0	UE+67		2.2E-64			
C50	7.6E+06	1.5E-9/ 4.0	E+TTO	Sŷ.	1.9E-104	* •		
sl	ope = 0.1	230 Std.Err.	= 1.	53				
~ _								
oodness of	fit: p =	0.85 bas	ed on DF=		3.0	18.		
918BH : Be	an plant he	ight (cm), Da	y 21; lbs					
served vs	. Predicted	Treatment Gr	oup Means					
Dose	#Reps.	Obs. P	red.	Obs.	Pred.	%Change		
Dose	нкерь.	Mean M			%Control	ochange	į	
•		mean m	Can	erca.	*COLLCT OT			
0.00	4.00	44.6	44.5	0.118	100.	0.00		
0.00483	4.00	44.5	43.8	0.737	98.3			
		40.0			97.8	2.18		
0.0376		46.7	43 3	3.40				
0.111	4.00 4.00		42.9 -			3.59	•	
0.319	4.00	41.9	42.5 -	0.604	95.5	4.50		
!Warning:	EC5 not bra	acketed by do	ses evalu	ated.				
!Warning:	EC10 not b	racketed by d	oses eval	uated.				
!!Warning:	EC25 not b	racketed by d	oses eval	uated.				
!Warning:	EC50 not b	racketed by d	oses eval	uated.				
		1; lbs a.i./A nsform: NO TR		ION				
ni-square	test for no	rmality: actu	al and ex	pected	frequenci	es		
UTERVAL.	c-1 5	-1.5 to <-0.	5 -0	5 to 0	5 >0 5	to 1 5	>1.5	
ADELOWED.	1 600	F 000		9.168		5.808	1.608	
SERVED	1.608 . 0	5.808 9		9.100 7		3.000 8	0	
	U			,		_	•	
								-
		goodness of f			c = 6.3	102	į.	
ble Chi-S	Square value	(alpha = 0.0	$1) \approx 13.2$	77				
ita PASS r	normality te	st. Continue	analysis.					
							•	
				÷				
ean % surv ile: 7918k		1; lbs a.i./A nsform: NO TR		ION				
napiro Wil	lks test for	normality						

0.957

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884

Data PASS normality test at P=0.01 level. Continue analysis.

Bean % survival, Day 21; lbs a.i./A

File: 7918bs Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

Bean % survival, Day 21; lbs a.i./A

File: 7918bs Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	neg control	100.000	100.000	76.000
2	0.00483	88.900	88.900	55.000
3	0.0127	93.650	93.650	62.000
4	0.0376	86.125	86.125	52.500
5 .	0.111	70.850	70.850	27.500
. 6	0.319	67.025	67.025	27.000

Calculated H Value = 10.491 Critical H Value Table = 11.070 Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.

Bean % survival, Day 21; lbs a.i./A

File: 7918bs Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2

					(GRO	UC	2	
		TRANSFORMED	ORIGINAL	0	0	0	0	0	0
GROUP	IDENTIFICATION	MEAN	MEAN	6	5	4	2	3	1
				-	-	-	-	-	_
6	0.319	67.025	67.025	\					
5	0.111	70.850	70.850		\				
4	0.0376	86.125	86.125			/			
2	0.00483	88.900	88.900				/		
3	0.0127	93.650	93.650					/	
1	neg control	100.000	100.000						/

	ent ID: 15472() <u>3</u>			EPA	MRID Num	Der: 4/12/5
= signific able q valu	ant difference (0.05,6)	nce (p=0.0 = 2.936	05)	. = SE =	no signif	icant diffe	erence
stimates of	EC%						
	Estimate	95% BOIII		Std Frr	Lower R	ound	~-
arameter	0.0033 0.013	Lower	Upper	504.111	/Estima	te	
C5	0.0033	2.7E-05	0.39	1.0	0.0084		
C10	0.013	0.00037	0.43	0.74	0.029		
C25	0.12	0.020	0.72	0.37 0.45	0.17		1
C50	1.5	0.17	13.	0.45	0.12		
910	pe = 0.6	20 Std Ei	rr =	0 296			
520	pc - 0.0	20 200.2.		0.220			
		_	·			11	
	fit: p =			DF=			<u>. </u>
	n % surviva						
bserved vs.	Predicted '	Treatment	Group Me	ans			
Dose	#Reps.	Obs	Pred.	Obs.	Pred	%Change	
DOSC	яксрь.	Mean	Mean	-Pred.	%Control	00110115	
0.00	4.00 4.00	100.	99.5	0.521 -4.43 4.16	100.	0.00	i
0,00483	4.00	88.9	93.3	-4.43	93.8	6.18	
0.0127		93.6	89.5	4.16	90.0	10.0	
0.0376	$\frac{4.00}{4.00}$	86.1	83.4	2.75 -4.42	83.8	16.2	
0.111	4.00	70.8	75.3	-4.42	75.7	24.3	
0.319	4.00	67.0	65.6	1.42	66.0	34.0	
!!Warning:	EC5 not bra	cketed by	doses ev	raluated.			
	ECEO not br	acketed by	v dogeg e	waluated			
11Warning.	EC20 HOC DI	acketed b	y doses e	varuaceu.			1.0
!!Warning:							
!!Warning:							
abbage plan	nt height (c						
abbage plan	nt height (c						
abbage plan ile: 7918ah		nsform: No	O TRANSFO	PRM	Ho:GRP1	MEAN = GR	P2 MEAN
abbage plan ile: 7918ah t-tes	Tra	nsform: No	O TRANSFO	ols			
abbage planile: 7918ah t-tes	Tra t of Solven ENT CRTL) ME	nsform: No t and Blan AN = 1	O TRANSFO nk Contro 4.7500	ORM Ols CALCULA	red t Valu	TE = -1.	
abbage planile: 7918ah t-tes	Tra t of Solven ENT CRTL) ME	nsform: No t and Blan AN = 1	O TRANSFO nk Contro 4.7500	ORM Ols CALCULA		TE = -1.	
abbage plan ile: 7918ah t-tes GRP1 (SOLVE GRP2 (BLANK DIFFERENCE	t of Solven CRTL) ME CRTL) MEAN IN MEANS	nsform: No t and Blan 	O TRANSFO nk Contro 4.7500 5.4000 0.6500	ORM DIS CALCULA DEGREES	FED t VALU	$ \mathbf{E} = -1. $ $ \mathbf{E} = 6 $	0771
abbage plan ile: 7918ah t-tes GRP1 (SOLVE GRP2 (BLANK DIFFERENCE	t of Solven CTL) ME CCTL) MEAN IN MEANS	nsform: No t and Blan AN = 1- = -(O TRANSFO	CALCULA DEGREES	FED t VALU	E = -1. M = 6	0771 lpha=0.05
abbage plan ile: 7918ah t-tes GRP1 (SOLVE GRP2 (BLANK DIFFERENCE 	t of Solven CTTL) ME CCRTL) MEAN IN MEANS JE (0.05 (2) JE (0.01 (2)	nsform: No t and Blan AN = 1 = 1: = -(, 6) = 2 , 6) = 3	O TRANSFO nk Contro 4.7500 5.4000 0.6500 447 N 707 N	CALCULA DEGREES TO signification of sign	FED t VALU	E = -1. M = 6	0771 lpha=0.05

9.168

5.808

1.608

1.608

EXPECTED

5.808

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203 EPA MRID Number: 47127918 OBSERVED · 0 Calculated Chi-Square goodness of fit test statistic = 6.3102 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION Shapiro Wilks test for normality D = 80.836W = 0.955Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884Data PASS normality test at P=0.01 level. Continue analysis. Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION Hartley test for homogeneity of variance Calculated H statistic (max Var/min Var) = 95.52 Closest, conservative, Table H statistic = 1705.0 (alpha = 0.01) R (# groups) = 7, df (# reps-1) = Used for Table H ==> R (# groups) = 7, df (# avg reps-1) =Actual values ==> 2.43 (average df used) Data PASS homogeneity test. Continue analysis. NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used). Cabbage plant height (cm), Day 21; lbs a.i./A Transform: NO TRANSFORMATION Bartletts test for homogeneity of variance ______ Calculated B statistic = 10.91 Table Chi-square value = 16.81 (alpha = 0.01) Table Chi-square value = 12.59 (alpha = 0.05)

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Average df used in calculation ==> df (avg n - 1) = 2.43 Used for Chi-square table value ==> df (#groups-1) = 6

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is

used to calculate the B statistic (see above).

Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	6	 77.844	12.974	2.728
Within (Error)	17	80.836	4.755	
Total	23	 158.680		

Critical F value = 2.70 (0.05,6,17)
Since F > Critical F REJECT Ho:All groups equal

Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho: Contro	l <treatm< th=""><th>ent</th></treatm<>	ent
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	14.750	14.750		
2	0.000629	15.100	15.100	-0.227	
3	0.00143	15.700	15.700	-0.616	•
4	0.00392	15.075	15.075	-0.211	
5	0.0127	16.533	16.533	-1.071	
6	0.0321	13.667	13.667	0.650	
7 ·	0.112	9.250	9.250	2.912	*

Bonferroni T table value = 2.65 (1 Tailed Value, P=0.05, df=17,6)

Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contro	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1 2	neg control 0.000629	4	4.094	27.8	-0.350

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203			- <u> </u>	EPA MRID Number: 47127918		
3	0.00143	4	4.094	27.8	-0.950	
4	0.00392	4	4.094	27.8	-0.325	
5	0.0127	3	4.422	30.0	-1.783	
6	0.0321	3	4.422	30.0	1.083	
7	0.112	2	5.014	34.0	5.500	

Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	14.750	14.750	15.374
2	0.000629	4	15.100	15.100	15.374
3	0.00143	4	15.700	15.700	15.374
4	0.00392	4	15.075	15.075	15.374
5	0.0127	3	16.533	16.533	15.374
6	0.0321	3	13.667	13.667	13.667
7	0.112	2	9.250	9.250	9.250

Cabbage plant height (cm), Day 21; lbs a.i./A File: 7918ah Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control	15.374				
0.000629	15.374	0.404		1.74	k = 1, v = 17
0.00143	15.374	0.404		1.82	k = 2, v = 17
0.00392	15.374	0.404		1.85	k = 3, v = 17
0.0127	15.374	0.374		1.87	k = 4, v = 17
0.0321	13.667	0.650		1.87	k = 5, v = 17
0.112	9.250	2.912	. *	1.88	k = 6, v = 17

s = 2.181

Note: df used for table values are approximate when v > 20.

Estimates of EC%

					 ~ _	
Parameter	Estimate	95% Bou	nds	Std.Err.	Lower Bound	
		Lower	Upper		/Estimate	
EC5	0.025	0.0056	0.11	0.31	0.23	
EC10	0.037	0.012	0.11	0.23	0.33	
EC25	0.071	0.040	0.12	0.12	0.57	
EC50	0.15	0.082	0.26	0.12	0.56	

Slope = 2.14 Std.Err. = 1.04

Goodness of fit: p = 0.78 based on DF= 4.0 17.

PMRA Submission Number: 2008-0431

PMRA Document ID: 154/203	4.4	EPA MRID Number: 47/1279	<i>)</i> 18

7918AH	:	Cabbage	plant	height	(cm),	Day	21;	lbs	a.i./A	

Observed vs. Predicted Treatment Group Means

		. 				_
Dose	#Reps.	Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change
0.00	4.00	14.8	15.3	-0.589	100.	0.00
0.000629	4.00	15.1	15.3	-0.239	100.	2.13e-05
0.00143	4.00	15.7	15.3	0.361	100.	0.000873
0.00392	4.00	15.1	15.3	-0.258	100.	0.0391
0.0127	3.00	16.5	15.2	1.37	98.8	1.16
0.0321	.3.00	13.7	14.1	-0.453	92.1	7.95
0.112	2.00	9.25	9.18	0.0718	59.8	40.2

!!!Warning: EC50 not bracketed by doses evaluated.

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORM

t-test of Solvent and Blank Controls

Ho: GRP1 MEAN = GRP2 MEAN

GRP1 (SOLVENT CRTL) MEAN	= .	100.0000	CALCULATED t VALUE =	1.0000
GRP2 (BLANK CRTL) MEAN	=	97.5000	DEGREES OF FREEDOM =	6
DIFFERENCE IN MEANS	=	2.5000		

TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED	1.876	6.776	10.696	6.776	1.876
OBSERVED		6	16	6	0

Calculated Chi-Square goodness of fit test statistic = 6.5599 Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

D = 2703.245

W = 0.948

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

Critical W (P = 0.05) (n = 28) = 0.924

EPA MRID Number: 47127918

Critical W (P = 0.05) (n = 28) = 0.924Critical W (P = 0.01) (n = 28) = 0.896

Data PASS normality test at P=0.01 level. Continue analysis.

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	RANK SUM
1	neg control	100.000	100.000	98.000
2	0.000629	100.000	100.000	98.000
3	0.00143	78.750	78.750	73.500
4	0.00392	47.200	47.200	56.000
5	0.0127	27.500	27.500	38.000
6	0.0321	11.075	11.075	22.000
7	0.112	9.125	9.125	20.500

Calculated H Value = 24.860 Critical H Value Table = 12.590 Since Calc H > Crit H REJECT Ho:All groups are equal.

Cabbage % survival, Day 21; lbs a.i./A

File: 7918as Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2

GROUP

TRANSFORMED ORIGINAL 0 0 0 0 0 0 0 0

GROUP IDENTIFICATION MEAN MEAN 7 6 5 4 3 2 1

7 0.112 9.125 9.125 \
6 0.0321 11.075 11.075 . \
5 0.0127 27.500 27.500 . . \
4 0.00392 47.200 47.200 . . . \
3 0.00143 78.750 78.750 . . . \
2 0.000629 100.000 100.000 * * . . \

1 ne	eg control				\			
= signific able q valu	cant differ ue (0.05,7)	ence (p=0 = 3.038	.05) 3	SE =	no signif 5.737	icant	diffe:	rence
stimates o	EC%							
rameter		95% BOI	inds	Std Err	Lower B	ound		-
31 3111 3 3 2 1	0.00014 0.00028	Lower	Upper		/Estima	te		
C5	0.00014	2.0E-05	0.00093	0.41	0.15			
C25	0.00028	5.3E-05	0.0015	0.35	0.19			
C50	0.0038	0.00027	0.0093	0.19	0.41			i
slo	ope = 1							
oodness of	fit: p =	0.34	based on	DF=	4.0	21.		_
	obage % sur			a.i./A				
 .	. Predicted			ans	·			-
Dose	#Reps.	Obs	Pred	Obs.	Pred	 %Cha	nge	-
DOBC	, ткорь:	Mean	Mean	-Pred.	%Control	00110	mge	
0.00	4.00	100.	108.	-8.02	100.	(0.00	!
	4.00	100.	87.8	12.2 4.74 -6.10 -2.21	81.3		L8.7	
0.000629 0.00143	4.00	78.8	74.0	4.74	68.5	3	31.5	
0.00392	4.00	47.2	53.3	-6.10	49.3		50.7	
0.0127	4.00	27.5	29.7 15.7	-2.21 -4.64	27.5 14.5		/2.5 35 5	
				4.04				
!!Warning:	EC5 not br	acketed by	y doses ev	valuated.				
·	EC10 not b				•			
	2020 1100 2							!
ettuce pla	nt height (cm) Day	21: lbs a	i./A				
ile: 79181	n Tr	ansform:	NO TRANSFO	ORM				
t-te	st of Solve	nt and Bla	ank Contro	ols	Ho:GRP1	MEAN	= GRP	2 MEAN
GRP1 (SOLV	ENT CRTL) M	EAN =	9.1333	CALCULA'	TED t VALU	=,=== E =	-4.2	301
GRP2 (BLAN DIFFERENCE	K CRTL) MEA IN MEANS	N = :	11.9000 -2.7667	DEGREES	OF FREEDO	M =	5	
	UE (0.05 (2 UE (0.01 (2							a=0.05 a=0.01
	nt height (h Tra							
				d expected	· •			

	ission Number: ment ID: 15472			EPA MRID N	umber: 4712	7918
EXPECTED OBSERVED		2.420	3.820 4	2.420 3	0.670	
		goodness of fit to (alpha = 0.01) =		= 1.6265		
Data PASS 1	normality tes	t. Continue anal	ysis.			
Lettuce pla File: 7918	ant height (c lh Tran	m), Day 21; lbs usform: NO TRANSF	a.i./A ORMATION			
Shapiro Wil	lks test for	normality				
D 10 10	0.4		\.			
D = 18.19						
W = 0.97						
		n = 10) = 0.842 n = 10) = 0.781				
Data PASS I	normality tes	t at P=0.01 leve	l. Continue an	alysis.		
•						
Lettuce pla File: 7918	ant height (c lh Tra	m), Day 21; lbs .nsform: NO TRANS	a.i./A FORMATION			
Hartley tes	st for homoge	neity of varianc	e			
		(max Var/min Var Table H statisti		lpha = 0.01)		
		R (# groups) = R (# groups) =	3, df (#			
	<u></u>					
Data PASS h	nomogeneity t	est. Continue an	alysis.			
but o	do not differ	s equal replicat greatly, the Ha test (average d	rtley test may			
Lettuce pla File: 7918		m), Day 21; lbs sform: NO TRANSF				
Bartletts t	test for homo	geneity of varia	nce			'

3.25

Calculated B statistic =

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Table Chi-square value = 9.21 (alpha = 0.01)
Table Chi-square value = 5.99 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 2.33 Used for Chi-square table value ==> df (#groups-1) = 2

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Lettuce plant height (cm), Day 21; lbs a.i./A File: 7918lh Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	2	2.815	1.407	0.541
Within (Error)	7	18.194	2.599	
Total	9	21.009		

Critical F value = 4.74 (0.05,2,7) Since F < Critical F FAIL TO REJECT Ho:All groups equal

Lettuce plant height (cm), Day 21; lbs a.i./A File: 7918lh Transform: NO TRANSFORMATION

File: 79181h Transform: NO TRANSFORMATION

BONFERRONI T-TEST - TABLE 1 OF 2

GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
, 1	neg control	9.133	9.133		
2	0.000629	9.175	9.175	-0.034	
3 .	0.00143	8.000	8.000	0.861	

Ho:Control<Treatment

Bonferroni T table value = 2.37 (1 Tailed Value, P=0.05, df=7,2)

Lettuce plant height (cm), Day 21; lbs a.i./A File: 7918lh Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	neg control	3			
2	0.000629	4	2.912	31.9	-0.042
3	0.00143	3	3.113	34.1	1.133

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Lettuce plant height (cm), Day 21; lbs a.i./A File: 7918lh Transform: NO TRANSFORMATION

TATE TEN MC	THE CITE	/Tactonia	regression	/ Labour	TABLE	1	\cap	2
MITHITHID	TEGI	(TROCOLLITC	TEATERSTOIL	moder/	THOUS		OF	_

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	3	9.133	9.133	9.157
2	0.000629	4	9.175	9.175	9.157
3	0.00143	3	8.000	8.000	8.000

Lettuce plant height (cm), Day 21; lbs a.i./A File: 7918lh Transform: NO TRANSFORMATION

	WILLIAMS	TEST	(Isotonic	regression	model)	TABLE	2	OF	2	
--	----------	------	-----------	------------	--------	-------	---	----	---	--

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control 0.000629	9.157 9.157	0.019		1.89	k = 1, v = 7
0.00143	8.000	0.861		2.00	k=2, $v=7$

s = 1.612

Note: df used for table values are approximate when v > 20.

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORM

t-test of Solvent a	and Blank Controls	Ho:GRP1 MEAN =	GRP2 MEAN
GRP1 (SOLVENT CRTL) MEAN GRP2 (BLANK CRTL) MEAN DIFFERENCE IN MEANS	= 93.7500	CALCULATED t VALUE = DEGREES OF FREEDOM =	0.1765

TABLE t VALUE $(0.05 \ (2), 5) = 2.571$ NO significant difference at alpha=0.05 TABLE t VALUE $(0.01 \ (2), 5) = 4.032$ NO significant difference at alpha=0.01

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	~1.5 to <~0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
		-			
EXPECTED	1.072	3.872	6.112	3.872	1.072
OBSERVED	0	7	. 3	6	0

._____

Calculated Chi-Square goodness of fit test statistic = 7.4250 Table Chi-Square value (alpha = 0.01) = 13.277

```
PMRA Submission Number: 2008-0431
PMRA Document ID: 1547203
                                                             EPA MRID Number: 47127918
Data PASS normality test. Continue analysis.
Lettuce % survival, Day 21; lbs a.i./A
                  Transform: NO TRANSFORMATION
Shapiro Wilks test for normality
D = 5259.389
W = 0.897
Critical W (P = 0.05) (n = 16) = 0.887
Critical W (P = 0.01) (n = 16) = 0.844
Data PASS normality test at P=0.01 level. Continue analysis.
Lettuce % survival, Day 21; lbs a.i./A
File: 79181s Transform: NO TRANSFORMATION
Hartley test for homogeneity of variance
_______
Calculated H statistic (max Var/min Var) = 25.02
Closest, conservative, Table H statistic = 1036.0 (alpha = 0.01)
Used for Table H ==> R (\# groups) = 5, df (\# reps-1) = Actual values ==> R (\# groups) = 5, df (\# avg reps-1) =
                                                                           2.20
                                                   (average df used)
Data PASS homogeneity test. Continue analysis.
NOTE: This test requires equal replicate sizes. If they are unequal
      but do not differ greatly, the Hartley test may still be used
      as an approximate test (average df are used).
Lettuce % survival, Day 21; lbs a.i./A
File: 7918ls Transform: NO TRANSFORMATION
Bartletts test for homogeneity of variance
Calculated B statistic =
                            6.80
Table Chi-square value = 13.28 (alpha = 0.01)
Table Chi-square value = 9.49 (alpha = 0.05)
Average df used in calculation ==> df (avg n - 1) = 2.20 Used for Chi-square table value ==> df (\#groups-1) = 4
```

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

EPA MRID Number: 47127918

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORMATION

ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	4	14553.948	3638.487	7,610
Within (Error)	11	5259.389	478.126	
Total	15	19813.337		

Critical F value = 3.36 (0.05, 4, 11)Since F > Critical F REJECT Ho:All groups equal

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORMATION

E	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho: Contro	l <treatm< th=""><th>ent</th></treatm<>	ent
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	95.233	95.233		
2	0.000629	89.750	89.750	0.328	
3	0.00143	52.375	52.375	2.566	
4	0.00392	58.350	58.350	1.848	
5	0.0127	11.100	11.100	4.712	*
-					

Bonferroni T table value = 2.59 (1 Tailed Value, P≈0.05, df=11,4)

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORMATION

DOM	ERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP I	DENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<u>.</u> .	neg control	3			
2	0.000629	4	43,321	45.5	5.483
3	0.00143	4	43.321	45.5	42.858
4	0.00392	2	51,779	54.4	36.883
5	0.0127	3	46.312	48.6	84.133

**EPA MRID Number: 47127918** 

#### PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

Lettuce % survival, Day 21; lbs a.i./A Transform: NO TRANSFORMATION File: 7918ls

> WILLIAMS TEST (Isotonic regression model) TABLE 1 OF 2

GROUP	IDENT	FICATION	N.	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
Т		neg control	3	95.233	95.233	95.233
2		0.000629	4	89.750	89.750	89.750
3		0.00143	4	52.375	52.375	54.367
4		0.00392	2	58.350	58.350	54.367
5		0.0127	3	11.100	11.100	11.100

Lettuce % survival, Day 21; lbs a.i./A

File: 7918ls Transform: NO TRANSFORMATION

WILLIAMS TEST (Isotonic regression model) TABLE 2 OF 2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control	95.233				
0.000629	89.750	0.328		1.80	k = 1, v = 11
0.00143	54.367	2.447	*	1.89	k = 2, v = 11
0.00392	54.367	2.047	*	1.92	k = 3, v = 11
0.0127	11.100	4.712	*	1.94	k = 4, v = 11

s = 21.866

Note: df used for table values are approximate when v > 20.

#### Estimates of EC%

Parameter	Estimate	95% Bou	nds	Std.Err.	Lower Bound	
		Lower	Upper		/Estimate	
EC5	0.00030	2.0E-05	0.0044	0.54	0.068	
EC10	0.00050	4.8E-05	0.0051	0.47	0.098	
EC25	0.0012	0.00020	0.0065	0.35	0.18	
EC50	0.0029	0.00092	0.0095	0.23	0.31	

Slope = 1.66 Std.Err. = 0.601

Goodness of fit: p = 0.26 based on DF= 2.0 11.

7918LS : Lettuce % survival, Day 21; lbs a.i./A

Observed vs. Predicted Treatment Group Means

Dose	#Reps.	Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change
0.00	3.00	95.2	95.4	-0.128	100.	0.00
0.000629	4.00	89.8	82.7	7.10	86.7	13.3
0.00143		52.4	66.6	-14.2	69.9	30.1
0.00392	2.00	58.4	39.9	18.4	41.9	58.1
0.0127	3.00	11.1	14.0	-2.88	14.7	85.3

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203 **EPA MRID Number: 47127918** !!!Warning: EC5 not bracketed by doses evaluated. !!!Warning: EC10 not bracketed by doses evaluated. Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 79180h Transform: NO TRANSFORM t-test of Solvent and Blank Controls Ho: GRP1 MEAN = GRP2 MEAN ______ GRP1 (SOLVENT CRTL) MEAN = 20.3000 CALCULATED t VALUE = -1.2376 GRP2 (BLANK CRTL) MEAN = 21.2750 DEGREES OF FREEDOM = 6 DIFFERENCE IN MEANS = -0.9750 TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 79180h Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 INTERVAL EXPECTED 0.938 3.388
OBSERVED 0 5 5.348 3.388 0.938 Calculated Chi-Square goodness of fit test statistic = 2.7762 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 7918oh Transform: NO TRANSFORMATION Shapiro Wilks test for normality D = 394.400W = 0.912Critical W (P = 0.05) (n = 14) = 0.874Critical W (P = 0.01) (n = 14) = 0.825Data PASS normality test at P=0.01 level. Continue analysis. Oilseed rape plant height (cm), Day 21; lbs a.i./A Transform: NO TRANSFORMATION File: 7918oh Hartley test for homogeneity of variance

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Calculated H statistic (max Var/min Var) = 103.66 Closest, conservative, Table H statistic = 120.0 (alpha = 0.01) Used for Table H ==> R (# groups) = 4, df (# reps-1) = Actual values ==> R (# groups) = 4, df (# avg reps-1) (average df used) df (# avg reps-1) = 2.50

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 7918oh Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance 

Calculated B statistic = 10.50

Table Chi-square value = 11.34 (alpha = 0.01)

Table Chi-square value = 7.81 (alpha = 0.05)

Average df used in calculation ==> df (avq n - 1) = 2.50 Used for Chi-square table value ==> df (#groups-1) = 3

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 7918oh Transform: NO TRANSFORMATION

#### ANOVA TABLE

			1		
SOURCE	DF	SS	MS	F	
Between	3	199.784	66.595	1.689	-
Within (Error)	10	394.400	39.440		
Total	13	594.184			_
				·	-

Critical F value = 3.71 (0.05, 3, 10)Since F < Critical F FAIL TO REJECT Ho: All groups equal

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 7918oh Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

PMRA I	Document ID: 1547203		EPA MR	ID Numbe	r: 4712	7918
Е	ONFERRONI T-TEST -	TABLE 1 OF 2	Ho:Contro	l <treatm< th=""><th>ent</th><th></th></treatm<>	ent	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	sig	
1 2 3 4	neg control 0.00143 0.00392 0.0127	20.300 21.625 25.725 13.650	20.300 21.625 25.725 13.650	-0.298 -1.222 1.223		

Bonferroni T table value = 2.41 (1 Tailed Value, P=0.05, df=10,3)

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 79180h Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	neg control	4			
2	0.00143	4	10.684	52.6	-1.325
3	0.00392	4	10.684	52.6	-5.425
4	0.0127	· . · 2	13.086	64.5	6.650

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 79180h Transform: NO TRANSFORMATION

	WILLIAMS TEST (Isoto	nıc	regression model)	TABLE 1 OF	2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	20.300	20.300	22.550
2	0.00143	4	21.625	21.625	22.550
3	0.00392	4	25.725	25.725	22.550
4	0.0127	2	13.650	13.650	13.650

Oilseed rape plant height (cm), Day 21; lbs a.i./A File: 79180h Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 O	F 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control 0.00143 0.00392 0.0127	22.550 22.550 22.550 13.650	0.507 0.507 1.223		1.81 1.91 1.94	k= 1, v=10 k= 2, v=10 k= 3, v=10

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203 EPA MRID Number: 47127918 Note: df used for table values are approximate when v > 20. Oilseed rape % survival, Day 21; lbs a.i./A File: 7918os Transform: NO TRANSFORM t-test of Solvent and Blank Controls Ho: GRP1 MEAN = GRP2 MEAN GRP1 (SOLVENT CRTL) MEAN = 91.8750 CALCULATED t VALUE = -1.0169 GRP2 (BLANK CRTL) MEAN = 97.5000 DEGREES OF FREEDOM = 6 DIFFERENCE IN MEANS = -5.6250 TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01 Oilseed rape % survival, Day 21; lbs a.i./A File: 7918os Transform: NO TRANSFORMATION Chi-square test for normality: actual and expected frequencies INTERVAL <-1.5 -1.5 to <-0.5 -0.5 to 0.5 >0.5 to 1.5 >1.5 9.168 5.808 EXPECTED 1.608 OBSERVED 0 5.808 1.608 5 11 Calculated Chi-Square goodness of fit test statistic = 4.5218 Table Chi-Square value (alpha = 0.01) = 13.277 Data PASS normality test. Continue analysis. Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION Shapiro Wilks test for normality D = 3056.400W = 0.961Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884Data PASS normality test at P=0.01 level. Continue analysis. Oilseed rape % survival, Day 21; lbs a.i./A File: 7918os Transform: NO TRANSFORMATION

Calculated H statistic (max Var/min Var) = 6.12 Closest, conservative, Table H statistic = 184.0 (alpha = 0.01)

Hartley test for homogeneity of variance

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

**EPA MRID Number: 47127918** 

R (# groups) = 6, df (# reps-1) = 3 R (# groups) = 6, df (# avg reps-1) = 3.00 Used for Table H ==> Actual values ==>

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

______

Calculated B statistic = 2.96

Table Chi-square value = 15.09 (alpha = 0.01) Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 3.00 Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION

ANOVA TABLE

SS SOURCE DF MS 5 30365.418 6073.084 35.766 Between Within (Error) 18 3056.400 169.800 23 33421.818

______

Critical F value = 2.77 (0.05, 5, 18)Since F > Critical F REJECT Ho:All groups equal

Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION

DUNNETTS TEST - TABLE 1 OF 2 Ho:Control<Treatment _______

TRANSFORMED MEAN CALCULATED IN GROUP IDENTIFICATION MEAN ORIGINAL UNITS T STAT SIG

#### PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

PMRA Doc	ument ID: 1547203		EPA I	MRID Numbe	r: 471	27918
1	neg control	91.875	91.875			
2	0.00143	79.375	79.375	1.357		
3	0.00392	31.875	31.875	6.512	*	
4	0.0127	12.150	12.150	. 8.652	*	
5	0.0321	5.000	5.000	9.428	*	
6	0.112	3.575	3.575	9.583	*	
D		/1 mailad 17a	1::0 D O OF df	10 =\		
Dunnett t	able value = 2.41	(I lalled va	lue, $P=0.05$ , $df=0.05$	18,5)		

Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION

	DUNNETTS TEST - T	ABLE 2 OF	2 Ho:	Control <treatment< th=""><th></th></treatment<>	
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of DIFFERENCE CONTROL FROM CONTRO	)L
1	neg control	4			-
2	0.00143	4	22.206	24.2 12.500	
. 3	0.00392	4	22.206	24.2 60.000	
4	0.0127	4	22.206	24.2 79.725	į
5	0.0321	4	22.206	24.2 86.875	
6	0.112	.4	22.206	24.2 88.300	:

Oilseed rape % survival, Day 21; lbs a.i./A File: 7918os Transform: NO TRANSFORMATION

	WILLIAMS TEST (Iso	otonic re	egression	model) TABLE 1	OF 2
GROUP			ORIGINAL	TRANSFORMED	ISOTONI
	IDENTIFICATION	N	MEAN	MEAN	MEAN

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	91.875	91.875	91.875
2	0.00143	4	79.375	79.375	79.375
3 .	0.00392	4	31.875	31.875	31.875
4	0.0127	4	12.150	12.150	12.150
5	0.0321	4	5.000	5.000	5.000
6	0.112	4	3.575	3.575	3.575

Oilseed rape % survival, Day 21; lbs a.i./A File: 79180s Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control	91.875		·		
0.00143	79.375	1.357		1.73	k = 1, v = 18
0.00392	31.875	6.512	* .	1.82	k = 2, v = 18
0.0127	12.150	8.652	*	1.85	k = 3, v = 18

VIXA DUCUII	nent ID: 1547					MRID Number:	
		5.000				k= 4, v=	
	0.112	3.575	9.583	*	1.87	k= 5, v=	18
= 13.03	1						
		e values ar	e approxi	mate when	v > 20		
	00 202 0002	o varaos ar	c approni	acc wiicii	. , 20.		
stimates o	f EC%						
arameter	Estimate	95% Boun	ds	Std.Err.	Lower Bo	und	
		Lower 1.4E-05	Upper		/Estimate	e	
C5	0.00018	1.4E-05	0.0021	0.52	0.082		
C10 .	0.00032	3.6E-05 0.00016	0.0029	0.46	0.11		
225	0.00087	0.00016	0.0048	0.36	0.18		
250	0.0026	0.00078	0.0088	0.25	0.30		
sl	ope = 1	.40 Std.Er	r. = 0	.366			
			<b>1</b> =				
ouness of	I1 <b>t:</b> p =	0.36 b	asea on D	P= .	3.0	18.	
1808 - 04		% survival,				<del></del>	
		<pre>% survival,</pre>					
		Treatment					
		Obs.				%Change	
DOSC	#Keps.	Mean	Moan	-Pred.	ercu.	actiatige	
		Mean	Mean	-Fred.	*COLLCTOT		
0.00	4 00	91.9	97.8	-5 90	100	0.00	
	4.00						
0.00392	4.00	79.4 31.9	39.4	-7.53	40.3	59.7	
	4.00	12.2	16 4	-4.30		83.2	
	4.00			-1.21	6.35	93.6	
	4.00	3.58	6.21 1.09	2.49	1.11	98.9	
0.112	4.00	3.30	1.05	2.49	T - T T	90.9	
!Warning	ECS not br	acketed by	doded erra	luated			
. warming.	ECS HOU DI	ackeded by	doses eva	ruaceu.			
!Warning:	EC10 not b	racketed by	doses ev	aluated			
						•	
	EC25 not b	racketed by	doses ev	aluated.			
	EC25 not b	racketed by	doses ev	aluated.			
!Warning:	nt height (	cm), Day 21	; lbs a.i	./A			
!Warning:	nt height (	cm), Day 21	; lbs a.i	./A			
!Warning:	nt height (		; lbs a.i	./A			
!Warning: bybean plan le: 7918sl	nt height ( h Tr	cm), Day 21	; lbs a.i TRANSFOR	./A M	Ho:GRP1 N	MEAN = GRP2 ME	EAN
!Warning: bybean plan le: 7918sl	nt height ( h Tr	cm), Day 21 ansform: NO	; lbs a.i TRANSFOR	./A M	Ho:GRP1 N	MEAN = GRP2 ME	EAN
!Warning: bybean plan le: 7918sl t-tes GRP1 (SOLVI	nt height (  n Tr  st of Solve  ENT CRTL) M	cm), Day 21 ansform: NO nt and Blan  EAN = 41	; lbs a.i TRANSFOR k Control	./A M s 	ED t VALUE	= 1.3598	EAN
!Warning:  ybean plan le: 7918sl  t-te:  RP1 (SOLVI	nt height (  n Tr  st of Solve  ENT CRTL) M  K CRTL) MEA	cm), Day 21 ansform: NO nt and Blan EAN = 41 N = 37	; lbs a.i TRANSFOR k Control .5250 .1750	./A M s 	ED t VALUE	= 1.3598	EAN
!Warning:  ybean plan le: 7918sl  t-te:  RP1 (SOLVI	nt height (  n Tr  st of Solve  ENT CRTL) M	cm), Day 21 ansform: NO nt and Blan EAN = 41 N = 37	; lbs a.i TRANSFOR k Control	./A M s 	ED t VALUE	= 1.3598	EAN
!Warning: pybean planter to the series of th	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS	cm), Day 21 ansform: NO nt and Blan EAN = 41 N = 37 = 4	; lbs a.i TRANSFOR k Control .5250 .1750 .3500	./A M s CALCULATI DEGREES (	ED t VALUE OF FREEDOM	= 1.3598 = 6	
!Warning: bybean plan le: 7918sl t-te: ERP1 (SOLVI ERP2 (BLANI IFFERENCE	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS	cm), Day 21 ansform: NO nt and Blan EAN = 41 N = 37 = 4	; lbs a.i TRANSFOR k Control .5250 .1750 .3500	./A M s CALCULATI DEGREES (	ED t VALUE OF FREEDOM	= 1.3598 = 6	
!Warning: pybean planter to the series of th	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS	cm), Day 21 ansform: NO nt and Blan EAN = 41 N = 37 = 4	; lbs a.i TRANSFOR k Control .5250 .1750 .3500	./A M s CALCULATI DEGREES (	ED t VALUE OF FREEDOM	= 1.3598	
!Warning: pybean planter 7918sl t-ter ERP1 (SOLVI	nt height ( n Tr st of Solve ENT CRTL) ME K CRTL) MEA IN MEANS UE (0.05 (2 UE (0.01 (2	cm), Day 21 ansform: NO  nt and Blan  EAN = 41  N = 37  = 4   ), 6) = 2.  ), 6) = 3.	; lbs a.i TRANSFOR k Control 	./A M s CALCULATI DEGREES (	ED t VALUE OF FREEDOM	= 1.3598 = 6	
!Warning: ybean plan le: 7918sl  t-te: RP1 (SOLVI RP2 (BLAN) IFFERENCE BLE t VALU BLE t VALU ybean plan	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS JE (0.05 (2 JE (0.01 (2	cm), Day 21 ansform: NO  nt and Blan EAN = 41 N = 37 = 4 ), 6) = 2. ), 6) = 3.  cm), Day 21	; lbs a.i TRANSFOR k Control .5250 .1750 .3500 	./A M s CALCULATI DEGREES ( significations)	ED t VALUE OF FREEDOM	= 1.3598 = 6	
!Warning: ybean planter 7918sl t-ter RP1 (SOLVI RP2 (BLANTER 1 IFFERENCE BLE t VALUE	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS JE (0.05 (2 JE (0.01 (2	cm), Day 21 ansform: NO  nt and Blan  EAN = 41  N = 37  = 4   ), 6) = 2.  ), 6) = 3.	; lbs a.i TRANSFOR k Control .5250 .1750 .3500 	./A M s CALCULATI DEGREES ( significations)	ED t VALUE OF FREEDOM	= 1.3598 = 6	
Warning:  ybean plan le: 7918sl  t-tes  RP1 (SOLVI  RP2 (BLANI  IFFERENCE   BLE t VALU  ybean plan le: 7918sl	nt height ( n Tr st of Solve ENT CRTL) M K CRTL) MEA IN MEANS UE (0.05 (2 UE (0.01 (2 nt height (	cm), Day 21 ansform: NO  nt and Blan EAN = 41 N = 37 = 4 ), 6) = 2. ), 6) = 3.  cm), Day 21	; lbs a.i TRANSFOR  k Control5250 .1750 .3500 .707 NO ; lbs a.i TRANSFORM	./A M s 	ED t VALUE DF FREEDOM ant differe	= 1.3598 = 6 ence at alphaence at alphae	

>0.5 to 1.5

>1.5

-1.5 to <-0.5

	ssion Number: nent ID: 15472				EPA MRID	Number: 47	127918
EXPECTED OBSERVED	1.608 0	5.808 7		9.168 9	5.808 8	1.608 0	
		goodness of fit (alpha = 0.01)			4.2910		-
Data PASS n	ormality tes	st. Continue and	alysis.				
Soybean pla File: 7918s		m), Day 21; lbs sform: NO TRANS					
Shapiro Wil	ks test for	normality	·.		· ·		
D = 377.20	8				•		
W = 0.97	5	•					
		(n = 24) = 0.916 (n = 24) = 0.884					
		st at P=0.01 lev			lysis.		
Soybean pla File: 7918s		m), Day 21; lbs insform: NO TRAI					
Hartley tes	t for homoge	eneity of varian	nce				<u>-</u> -
		(max Var/min Va Table H statist			pha = 0.01)		
Used for Ta Actual valu	ble H ==> es ==>	R (# groups) R (# groups)	= 6, = 6,	df (# df (#	reps-1) = avg reps-1) =	3.00	
Data PASS h	omogeneity t	est. Continue a	analysis				<u>-</u>
but d	o not differ	es equal replications of the second s	Iartley	test may			
				•			
Soybean pla File: 7918s	nt height (c h Trar	m), Day 21; lbs asform: NO TRANS	s a.i./A SFORMATI	ON			
Bartletts t	est for homo	ogeneity of var	Lance			, 	:  -  -  -
	B statistic quare value	= 13.25 = 15.09 (alg	oha = 0.	01)			

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

EPA MRID Number: 47127918

Table Chi-square value = 11.07 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = Used for Chi-square table value ==> df (#groups-1) = 5

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Soybean plant height (cm), Day 21; lbs a.i./A File: 7918sh Transform: NO TRANSFORMATION

#### ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	5	427.102	85.420	4.076
Within (Error)	18	377.207	20.956	
Total	23	804.310		

Critical F value = 2.77 (0.05, 5, 18)Since F > Critical F REJECT Ho: All groups equal

Soybean plant height (cm), Day 21; lbs a.i./A File: 7918sh Transform: NO TRANSFORMATION

	DUNNETTS TEST - T	Ho:Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG
1	neg control	41.525	41.525		
2	0.00483 0.0127	32.350 39.400	32.350 39.400	2.834 0.656	*
. <u>4</u> 5	0.0376 0.111	34.200 34.200	34.200 34.200	2.263 2.263	
6	0.319	28.950	28.950	3.885	*

Dunnett table value = 2.41 (1 Tailed Value, P=0.05, df=18,5)

Soybean plant height (cm), Day 21; lbs a.i./A File: 7918sh Transform: NO TRANSFORMATION

e e	DUNNETTS TEST ` - 1	TABLE 2 OF	2 Ho:	Control <t:< th=""><th>reatment</th></t:<>	reatment
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1 2	neg control 0.00483	4 4	7.801	18.8	9.175

#### PMRA Submission Number: 2008-0431

<b>PMRA</b>	<b>Document ID</b>	: 1547203			EPA MRI	D Number: 47127918	
3		0.0127	4	7.801	18.8	2.125	
4		0.0376	4	7.801	18.8	7.325	
5 .		0.111	4	7.801	18.8	7.325	
6		0.319	4	7.801	18.8	12.575	

Soybean plant height (cm), Day 21; lbs a.i./A File: 7918sh Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE	1	OF	2
---------------	-----------	------------	--------	-------	---	----	---

GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	41.525	41.525	41.525
2 .	0.00483	4	32.350	32.350	35.875
3	0.0127	4	39.400	39.400	35.875
4	0.0376	4	34.200	34.200	34.200
5 '	0.111	4	34.200	34.200	34.200
6	0.319	4	28.950	28.950	28.950

Soybean plant height (cm), Day 21; lbs a.i./A File: 7918sh Transform: NO TRANSFORMATION

M	ILLIAMS	TEST	(Isotonic	regression	model)	TABLE	2	OF	2

IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control	41.525				
0.00483	35.875	1.745	*	1.73	k = 1, v = 18
0.0127	35.875	1.745		1.82	k = 2, v = 18
0.0376	34.200	2.263	*	1.85	k = 3, v = 18
0.111	34.200	2.263	*	1.86	k = 4, v = 18
0.319	28.950	3.885	*	1.87	k = 5, v = 18

s = 4.578

Note: df used for table values are approximate when v > 20.

Estimates of EC%

	<b></b>			<b></b> _		
Parameter	Estimate	95% Bot	ınds	Std.Err.	Lower Bound	
		Lower	Upper	٠.	/Estimate	
EC5	0.00028	4.9E-08	1.6	1.8	0.00018	
EC10	0.0037	1.1E-05	1.2	1.2	0.0030	
EC25	0.28	0.013	5.8	0.63	0.048	
EC50	34.	0.037	3.0E+04	1.4	0.0011	

Slope = 0.323 Std.Err. = 0.188

Goodness	of fit:	p =	0.085	base	d on	DF=	= .	3.0	18.	
	<b></b>	<b></b> -	- <b></b> -						 <b></b>	
7918SH :	Soybean	plant	height	(cm),	Day	21;	lbs a.	i./A		

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Observed vs.	Predicted	Treatment	Group Me	eans			
Dose	#Reps.	Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change	
0.00 0.00483 0.0127 0.0376 0.111 0.319	4.00 4.00 4.00 4.00 4.00 4.00	41.5 32.3 39.4 34.2 34.2 28.9	41.1 36.7 35.6 34.1 32.4 30.6	0.399 -4.38 3.79 0.0606 1.76 -1.63	100. 89.3 86.6 83.0 78.9 74.4	0.00 10.7 13.4 17.0 21.1 25.6	

!!!Warning: EC5 not bracketed by doses evaluated.

!!!Warning: EC10 not bracketed by doses evaluated.

!!!Warning: EC50 not bracketed by doses evaluated.

Soybean % survival, Day 21; lbs a.i./A

File: 7918ss Transform: NO TRANSFORM

t-test of	Solvent	and	Blank Co	ontrols	 Ho:GRP1	MEAN	= GRP2 N	IEAN
GRP1 (SOLVENT C GRP2 (BLANK CRT DIFFERENCE IN M	L) MEAN	=	94.725 100.000 -5.275	00	 ED t VALUI OF FREEDOI		-1.7274 6	1

TABLE t VALUE (0.05 (2), 6) = 2.447 NO significant difference at alpha=0.05 TABLE t VALUE (0.01 (2), 6) = 3.707 NO significant difference at alpha=0.01

Soybean % survival, Day 21; lbs a.i./A

File: 7918ss Transform: NO TRANSFORMATION

Chi-square test for normality: actual and expected frequencies

INTERVAL	<-1.5	-1.5 to <-0.5	-0.5 to 0.5	>0.5 to 1.5	>1.5
EXPECTED OBSERVED	1.608	5.808	9.168 12	5 . 808 5	1.608

Calculated Chi-Square goodness of fit test statistic = 4.4479
Table Chi-Square value (alpha = 0.01) = 13.277

Data PASS normality test. Continue analysis.

Soybean % survival, Day 21; lbs a.i./A File: 7918ss Transform: NO TRANSFORMATION

Shapiro Wilks test for normality

D = 1929.465

W = 0.952

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Critical W (P = 0.05) (n = 24) = 0.916Critical W (P = 0.01) (n = 24) = 0.884

Data PASS normality test at P=0.01 level. Continue analysis.

Soybean % survival, Day 21; lbs a.i./A

File: 7918ss Transform: NO TRANSFORMATION

Hartley test for homogeneity of variance Bartletts test for homogeneity of variance

These two tests can not be performed because at least one group has zero variance.

Data FAIL to meet homogeneity of variance assumption. Additional transformations are useless.

Soybean % survival, Day 21; lbs a.i./A File: 7918ss Transform: NO TRANSFORMATION

KRUSKAL-WALLIS ANOVA BY RANKS - TABLE 1 OF 2

TRANSFORMED MEAN CALCULATED IN RANK MEAN IDENTIFICATION MEAN ORIGINAL UNITS SUM

1 neg control 94.725 94.725 49.000
2 0.00483 92.500 92.500 53.500
3 0.0127 100.000 100.000 68.000
4 0.0376 91.675 91.675 44.500
5 0.111 97.500 97.500 59.500
6 0.319 81.050 81.050 25.500

Calculated H Value = 7.005 Critical H Value Table = 11.070 Since Calc H < Crit H FAIL TO REJECT Ho:All groups are equal.

Soybean % survival, Day 21; lbs a.i./A

File: 7918ss Transform: NO TRANSFORMATION

DUNNS MULTIPLE COMPARISON - KRUSKAL-WALLIS - TABLE 2 OF 2

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203	EPA MRID Number: 47127918
* = significant difference (p=0.05) Table q value (0.05,6) = 2.936	<pre>. = no significant difference SE = 4.345</pre>
Tomato plant height (cm), Day 21; lbs a.i. File: 7918th Transform: NO TRANSFOR	./A RM
t-test of Solvent and Blank Control	ls Ho:GRP1 MEAN = GRP2 MEAN
GRP1 (SOLVENT CRTL) MEAN = 15.1250 GRP2 (BLANK CRTL) MEAN = 12.7750 DIFFERENCE IN MEANS = 2.3500	DEGREES OF FREEDOM = 6
TABLE t VALUE (0.05 (2), 6) = 2.447** S TABLE t VALUE (0.01 (2), 6) = 3.707 NO	SIGNIFICANT DIFFERENCE at alpha=0.05 D significant difference at alpha=0.01
Tomato plant height (cm), Day 21; lbs a.i. File: 7918th Transform: NO TRANSFORM	
Chi-square test for normality: actual and	expected frequencies
INTERVAL <-1.5 -1.5 to <-0.5	-0.5 to 0.5 >0.5 to 1.5 >1.5
EXPECTED 1.005 3.630 OBSERVED 0 5	5.730 3.630 1.005 5 0
Calculated Chi-Square goodness of fit test Table Chi-Square value (alpha = 0.01) = 13	
Data PASS normality test. Continue analysis	is.
Tomato plant height (cm), Day 21; lbs a.i. File: 7918th Transform: NO TRANSFORM	
Shapiro Wilks test for normality	
D = 79.624	
W = 0.985	
Critical W (P = 0.05) (n = 15) = 0.881 Critical W (P = 0.01) (n = 15) = 0.835	
Data PASS normality test at P=0.01 level.	Continue analysis.
Tomato plant height (cm), Day 21; lbs a.i. File: 7918th Transform: NO TRANSFOR	
Hartley test for homogeneity of variance	

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Calculated H statistic (max Var/min Var) = 14.10 Closest, conservative, Table H statistic = 120.0 (alpha = 0.01)

Used for Table H ==> R (# groups) = 4, df (# reps-1) = 3
Actual values ==> R (# groups) = 4, df (# avg reps-1) = 2.75
(average df used)

Data PASS homogeneity test. Continue analysis.

NOTE: This test requires equal replicate sizes. If they are unequal but do not differ greatly, the Hartley test may still be used as an approximate test (average df are used).

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

Bartletts test for homogeneity of variance

Calculated B statistic = 5.90
Table Chi-square value = 11.34 (alpha = 0.01)
Table Chi-square value = 7.81 (alpha = 0.05)

Average df used in calculation ==> df (avg n - 1) = 2.75 Used for Chi-square table value ==> df (#groups-1) = 3

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is used to calculate the B statistic (see above).

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

#### ANOVA TABLE

SOURCE	DF	SS	MS	F
Between	3	88.373	29.458	4.069
Within (Error)	11	79.624	7.239	·
Total	14	167.997		

Critical F value = 3.59 (0.05,3,11)
Since F > Critical F REJECT Ho:All groups equal

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

<b>PMRA</b>	Document ID: 1547203		EPA MRID Number: 47127918			
	BONFERRONI T-TEST -	TABLE 1 OF 2	Ho: Contro	ol <treatment< th=""></treatment<>		
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT SIG		
1	neg control	15.125	15.125			
2	0.00143	12.750	12.750	1.248		
3	0.00392	10.700	10.700	2.326		
4	0.0127	8.333	8.333	3.305 *		
Bonfe:	rroni T table value =	2.43 (1 Tail	led Value, P=0.05, d	lf=11,3)		

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

	BONFERRONI T-TEST -	TABLE	2 OF 2	Ho:Contr	ol <treatment< th=""></treatment<>
GROUP	IDENTIFICATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)	% of CONTROL	DIFFERENCE FROM CONTROL
1	neg control	4		•	
2	0.00143	4	4.627	30.6	2.375
3	0.00392	4	4.627	30.6	4.425
4	0.0127	3	4.998	33.0	6.792

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

	WILLIAMS TEST (Isot	onic	regression mode	l) TABLE 1 C	F 2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	15.125	15.125	15.125
2	0.00143	3 4	12.750	12.750	12.750
3	0.00392	2 4	10.700	10.700	10.700
4	0.0127	7 3	8.333	8.333	8.333

Tomato plant height (cm), Day 21; lbs a.i./A File: 7918th Transform: NO TRANSFORMATION

	WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 OF	F 2
IDEN	TIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
· · · · · · · · · · · · · · · · · · ·	neg control 0.00143 0.00392 0.0127	15.125 12.750 10.700 8.333	1.248 2.326 3.305	*	1.80 1.89 1.92	k=1, v=11 k=2, v=11 k=3, v=11
s =	2.690			<b></b>		

PMRA Submission 1	Number:	2008-0431
-------------------	---------	-----------

	sed for tabl	e varues a	re approx.	rmace when			
stimates							
arameter	Estimate	95% Bou	nds	Std.Err.	Lower Bo	und	
	0.00025	Lower	Upper		/Estimat	e į	
C5	0.00025	3.0E-06	0.021	0.88	0.012		
C10	0.00064	2.1E-05	0.019	0.68	0.034		
C25 .	0.00064 0.0030	0.00047	0.020	0.37	0.15		
C50	0.017	0.0035	0.084	0.32	0.20		
s:	lope = 0.	896 Std.E	rr. = (	0.487	•		
	·						
oodness o	f fit: p =	0.89	based on 1	OF=	1.0	11.	
	omato plant				/A 		
bserved v	s. Predicted	Treatment	Group Mea	ans			
Dose	#Reps.	Obs.	Pred.	Obs.	Pred.	%Change	
	-	Obs. Mean	Mean	-Pred.	%Control		
0.00	4.00	15.1	15.1	-0.0230	100.	0.00	
0.00	4 00	12 8	12.5	0.0230	83.3	16 7	
0.00143	4.00	10 7	10 0	-0.157	71 7	20.7	-
0.00392	4.00 4.00 3.00	10.7	10.9	-0.157	71.7	20.3	
0.0127	3.00	8.33	8.27	0.0629	54.6	45.4	
!!Warning	: EC5 not br	acketed by	doses eva	aluated.			
!!Warning	: EC10 not b	racketed b	y doses e	valuated.			
!!Warning	: EC50 not b	racketed b	y doses e	valuated.		·	
omato % s	urvival, Day	21: lbs a	.i./A				
ile: 7918	ts Tr	ansform: N	O TRANSFO	RM	*		
							_
t-t	est of Solve	nt and Bla	nk Control	ls 	Ho:GRP1	MEAN = GF	RP2 MEAN
GRP1 (SOL	VENT CRTL) M	EAN = 8	6.3250	CALCULAT	ED t VALUE	: = -1.	0316
GRP2 (BLA	NK CRTL) MEA	N = 9	3.0500	DEGREES	OF FREEDOM	I = 6	
DIFFERENC	NK CRTL) MEA E IN MEANS	. ,= '-	6.7250				
ARTE + VA	LUE (0.05 (2	) . 6) = 2	447 Nr	) signific	ant differ	ence at a	lnha-0
ABLE t VA	LUE (0.03 (2	), 6) = 3	.707 No	o signific	ant differ	ence at a	ilpha=0.
omato % s	urvival, Day	21; lbs a	.i./A	•			
	ts Tra			MATION	,		
hi-square	test for no	rmality: a	ctual and	expected	frequencie	:S	
NTERVAL	<-1.5	-1.5 to <	_ Ó =	0 E +0 0	5 >0.5	+0 1 5	>1.5

Calculated Chi-Square goodness of fit test statistic = 3.3198

3.872

EXPECTED

1.072

6.112

3.872

1.072

```
PMRA Submission Number: 2008-0431
PMRA Document ID: 1547203
                                                          EPA MRID Number: 47127918
Table Chi-Square value (alpha = 0.01) = 13.277
Data PASS normality test. Continue analysis.
Tomato % survival, Day 21; lbs a.i./A
                  Transform: NO TRANSFORMATION
File: 7918ts
Shapiro Wilks test for normality
D = 3376.475
W =
    0.988
Critical W (P = 0.05) (n = 16) = 0.887
Critical W (P = 0.01) (n = 16) = 0.844
Data PASS normality test at P=0.01 level. Continue analysis.
Tomato % survival, Day 21; lbs a.i./A
                   Transform: NO TRANSFORMATION
File: 7918ts
Hartley test for homogeneity of variance
______
Calculated H statistic (max Var/min Var) = 3.83
Closest, conservative, Table H statistic = 120.0 (alpha = 0.01)
                       R (# groups) = 4, df (# reps-1) = 3
R (# groups) = 4, df (# avg reps-1) = 3.00
Used for Table H ==>
Actual values ==>
Data PASS homogeneity test. Continue analysis.
NOTE: This test requires equal replicate sizes. If they are unequal
      but do not differ greatly, the Hartley test may still be used
      as an approximate test (average df are used).
Tomato % survival, Day 21; lbs a.i./A
                  Transform: NO TRANSFORMATION
File: 7918ts
Bartletts test for homogeneity of variance
Calculated B statistic = 1.28
Table Chi-square value = 11.34 (alpha = 0.01)
Table Chi-square value = 7.81 (alpha = 0.05)
Average df used in calculation ==> df (avg n - 1) = 3.00 Used for Chi-square table value ==> df (\#groups-1) = 3
```

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Data PASS homogeneity test at 0.01 level. Continue analysis.

NOTE: If groups have unequal replicate sizes the average replicate size is

used to calculate the B statistic (see above).

Tomato % survival, Day 21; lbs a.i./A

File: 7918ts Transform: NO TRANSFORMATION

#### ANOVA TABLE

					1
SOURCE	DF	SS	MS	F	
Between	3	9119.075	3039.692	10.803	
Within (Error)	12	3376.475	281.373		
Total	15	12495.550			-

Critical F value = 3.49 (0.05, 3, 12)

Since F > Critical F REJECT Ho: All groups equal

Tomato % survival, Day 21; lbs a.i./A

File: 7918ts Transform: NO TRANSFORMATION

	DUNNETTS TEST - '	Ho: Control <treatment< th=""></treatment<>			
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STÁT	STO
		PIEM			510
1	neg control	86.325	86.325		
2	0.00143	65.975	65.975	1.716	

0.00143 65.975 65.975 0.00392 53.650 53.650 0.0127 20.550 20.550 2.755 * 5.545 * 3

Dunnett table value = 2.29 (1 Tailed Value, P=0.05, df=12,3)

Tomato % survival, Day 21; lbs a.i./A

Transform: NO TRANSFORMATION File: 7918ts

	DUNNETTS TEST	T '	TABLE 2 OF	2 Ho:	Control <t< th=""><th>reatment</th></t<>	reatment
GROUP	IDENTIFIC	ATION	NUM OF REPS	Minimum Sig Diff (IN ORIG. UNITS)		DIFFERENCE FROM CONTROL
1	neg	control 0.00143	4	27.162	31.5	20.350
3		0.00143	<b>-</b> .	27.162 27.162 27.162	31.5 31.5	32.675 65.775
		0.0127	4	2/.102	31.5	05.775

Tomato % survival, Day 21; lbs a.i./A

Transform: NO TRANSFORMATION File: 7918ts

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

	WILLIAMS TEST (Isotor	nic	regression model	TABLE 1 C	OF 2
GROUP	IDENTIFICATION	N	ORIGINAL MEAN	TRANSFORMED MEAN	ISOTONIZED MEAN
1	neg control	4	86.325	86.325	86.325
2	0.00143	4	65.975	65.975	65.975
3	0.00392	4	53.650	53.650	53.650
4	0.0127	4	20.550	20.550	20.550

Tomato % survival, Day 21; lbs a.i./A

File: 7918ts Transform: NO TRANSFORMATION

WILLIAMS TEST	(Isotonic	regression	model)	TABLE 2 C	)F', 2
IDENTIFICATION	ISOTONIZED MEAN	CALC. WILLIAMS	SIG P=.05	TABLE WILLIAMS	DEGREES OF FREEDOM
neg control 0.00143 0.00392 0.0127	86.325 65.975 53.650 20.550	1.716 2.755 5.545	* *	1.78 1.87 1.90	k= 1, v=12 k= 2, v=12 k= 3, v=12

s = 16.774

Note: df used for table values are approximate when v > 20.

Estimates of EC%

Parameter	Estimate	95% Bou	ınds	Std.Err.	Lower Bound		
		Lower	Upper		/Estimate		
EC5	0.00059	7.2E-05	0.0048	0.42	0.12		
EC10	0.00096	0.00016	0.0056	0.36	0.17		
EC25	0.0021	0.00062	0.0075	0.25	0.29		
EC50	0.0053	0.0025	0.011	0.15	0.46		

Slope = 1.73 Std.Err. = 0.573

Goodness of fit: p = 0.53 based on DF= 1.0 12. 

7918TS: Tomato % survival, Day 21; lbs a.i./A

Observed vs. Predicted Treatment Group Means

Dos	e #Reps	. Obs. Mean	Pred. Mean	Obs. -Pred.	Pred. %Control	%Change	
0.0 0.0014 0.0039 0.012	3 4.00 2 4.00	66.0 53.6	84.6 70.7 49.7 21.5	1.77 -4.75 3.94 -0.954	100. 83.6 58.8 25.4	0.00 16.4 41.2 74.6	

!!!Warning: EC5 not bracketed by doses evaluated.

!!!Warning: EC10 not bracketed by doses evaluated.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

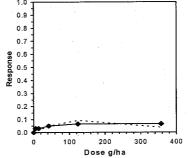
TOTAL DRY WEIGHT STATISTICS (g ai/ha)

IIA 8.12 MRID-47127918 PMRA-1547203 PMRA sub 2008-0431 BAS800 02H seed emerg

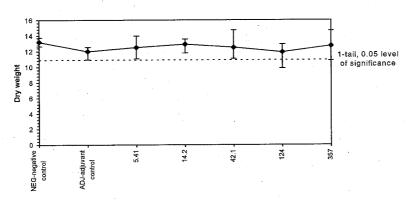
Total dry weight was calculated by multiplying the reported average dry weight per living plant and multiplying it by the number of survivors in that pot. Treatments groups were compared to the negative control groups only as per USEPA policy. Replicates with no survivors were not included in the analysis. Hypothesis testing was conducted with Dunnett's test except in cases where the assumptions of normality and equal variances were not met. In these cases, Bonferroni's t-test was used. Point estimates were derived using linear interpolation.

PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203


EPA MRID Number: 47127918

				Te	rrestrial plant	s-Dry weight			
Start Date: End Date: Sample Date: Comments:			Test ID: Lab ID: Protocol:		International Seedling emerg	Sample ID: Sample Type: genTest Species:	BAS8002-12% EP-end-use pr CRSP-crop sp	oduct	
Conc-g/ha	. 1 .	2	3	4					
egative control	12.700	13,700	13.600	12.600					
ijuvant control	12.510	12.420	10,900	12.000					
5.41	11.100	14.000	13.800	11.280					
14.2	11.840	13.300	13.600	13.000					
42.1	11.600	14.700	12.600	11.070					
124	12.100	12.960	9.870	12.800					
357	10.800	11,900	13.300	14.600					


				Transforn	n: Untran	sformed		_	1-Tailed		Isot	onic
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
egative control	13,150	1.0997	13.150	12.600	13.700	4.412	4	*			13.150	1.0000
diuvant control	11.958	1.0000	11.958	10.900	12.510	6.182	4					
5.41	12,545	1.0491	12.545	11.100	14.000	12.503	4	0.640	2.410	2.278	12.740	0.9688
14.2	12.935	1.0817	12.935	11.840	13.600	5.953	4	0.227	2.410	2.278	12.740	0.9688
42.1	12.493	1.0447	12,493	11.070	14.700	12.828	4	0.695	2.410	2.278	12.493	0.9500
124	11.933	0.9979	11.933	9.870	12.960	11,941	4	1.288	2.410	2.278	12.291	0.9347
357	12.650	1.0579	12.650	10.800	14.600	13.077	4	0.529	2.410	2.278	12.291	0.9347

Auxiliary Tests									Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distrib	ution (p > 0	0.05)		0.97402		0.916		0.00342	-0.8173
Bartlett's Test indicates equal var					4.08417		15.0863			
The control means are significant			)		2.53796		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	357	>357			2.27834	0.17326	0.70042	1.78744	0.84792	5, 18
±										

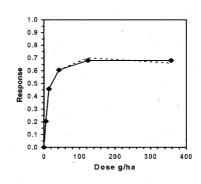
Treatments vs NEG-negative control Linear Interpolation (200 Resamples) Point IC05 IC10 IC15 IC20 IC25 IC40 IC50 g/ha 42.100 >357 >357 >357 95% CL(Exp) Skew 0.9 ->357 >357 0.8 0.7



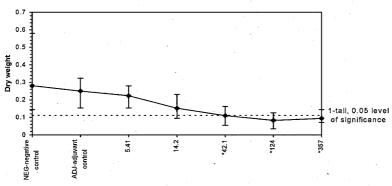
Dose-Response Plot



PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203


EPA MRID Number: 47127918

Ryegras	S					
				Terrestrial plant	s-Dry weight	and the second s
Start Date:			Test ID:	1547203	Sample ID:	BAS8002-12% saflufenacil
End Date:			Lab ID:	WI-Wildlife International	Sample Type:	EP-end-use product
Sample Date:			Protocol:	OECD208-Seedling emer	gen Test Species:	CRSP-crop species
Comments:						
Conc-g/ha	1	2	3	4		
egative control	0.1440	0.5800	0.2070	0.1890	1.	
ljuvant control	0.3240	0.1540	0.2700	0.2520		
5.41	.0.2340	0.2250	0.2790	0.1520		
14.2	0.0950	0.1560	0.2310	0.1260		
42.1	0.1190	0.0550	0.1620	0.1050		
124	0.1200	0.0360	0.0520	0.1260	*	
357	0.0800	0.0720	0.0840	0.1440		· · · · · · · · · · · · · · · · · · ·


				Transforn	n: Untran	sformed			1-Tailed		Isot	onic
Conc-g/ha	Mean	N-Mean "	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	NMean
egative control	0.2800	1.1200	0.2800	0.1440	0.5800	72.053	4	*			0.2800	1.0000
djuvant control	0.2500	1.0000	0.2500	0.1540	0.3240	28.375	. 4					
5.41	0.2225	0.8900	0.2225	0.1520	0.2790	23.641	4	0.873	2.552	0.1681	0.2225	0.7946
14.2	0.1520	0.6080	0.1520	0.0950	0.2310	38.328	4	1.944	2.552	0.1681	0.1520	0.5429
*42.1	0.1103	0.4410	0.1103	0.0550	0.1620	40.001	4	2.578	2.552	0.1681	0.1103	0.3938
*124	0.0835	0.3340	0.0835	0.0360	0.1260	55.259	4	2.984	2.552	0.1681	0.0893	0.3188
*357	0.0950	0.3800	0.0950	0.0720	0.1440	34,785	4	2.810	2.552	0.1681	0.0893	0.3188

Auxiliary Tests									Skew	Kurt
Shapiro-Wilk's Test indicates nor	n-normal dis	stribution	$(p \le 0.05)$		0.83618		0.916		1.99562	7.17959
Bartlett's Test indicates equal var	riances (p =	0.01)			14.6207		15.0863			
The control means are not signifi	cantly differ	ent (p = 0	0.79)		0.28056		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	14.2	42.1	24,4504		0.16806	0.60023	0.0247	0.00867	0.04578	5, 18
Trantmonto un NEC pagativa con	tral									

				Linea	r Interpolation	(200 Resamples)
Point	g/ha	SD	95% C	L(Exp)	Skew	•
IC05*	1.317	3.950	0.006	26.419	1.7083	
IC10*	2.634	4.733	0.013	30.118	1.6163	
IC15*	3.952	5.616	0.019	34.488	1.5465	1.0
IC20*	5.269	6.637	0.025	39.792	1.5193	2.1
IC25	6.969	8.912	0.000	49.044	1.7382	0.9
IC40	. 12.205	22.079	0.000	129.447	2.0508	0.8
IC50	22.219					0.7



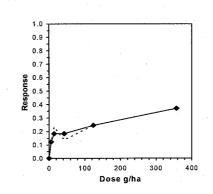




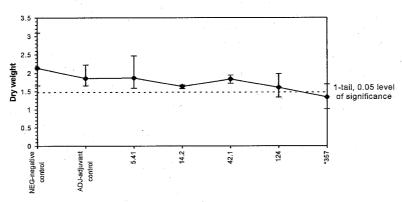
PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203

EPA MRID Number: 47127918


Wheat									
				1	errestrial plants	-Dry weight			
Start Date: End Date: Sample Date: Comments:			Test ID: Lab ID: Protocol:		e International -Seedling emerg	Sample ID: Sample Type: en Test Species:	EP-end-	2-12% saflufenaci use product rop species	
Conc-g/ha	1	2	3	4					
agative control	1.6600	3.0900		1.9100					
ljuvant control	1.6560	1.7800	1.7640	2.2200					
5.41	1.8180	1.6080	1.5930	2.4700					
14.2	1.5840	1.6800	1.6560	1.6400					
42.1	1.7280	1.9500	1.8800	1.8130					
124	1.9890	1.3410	1.3440	1.7730					
357	1.1680	1.4900	1.0170	1.7040					

				Transform	n: Untran	sformed		_	1-Tailed			Isotonic	
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
egative control	2.1350	1.1509	2.1350	1.6600	3.0900	30.274	4	*			2.1350	1.0000	
diuvant control	1.8550	1.0000	1.8550	1.6560	2.2200	13.449	4						
5.41	1.8723	1,0093	1.8723	1.5930	2.4700	21.980	4	1.019	2.552	0.6584	1.8723	0.8769	
14.2	1.6400	0.8841	1.6400	1.5840	1.6800	2.487	4	1.919	2.552	0.6584	1.7414	0.8156	
42.1	1.8428	0.9934	1.8428	1.7280	1.9500	5.143	4	1,133	2.552	0.6584	1.7414	0.8156	
124	1.6118	0.8689	1.6118	1.3410	1.9890	20.051	4.	2.028	2.552	0.6584	1.6118	0.7549	
*357	1.3448	0.7249	1.3448	1.0170	1.7040	23.073	4	3.064	2.552	0.6584	1.3448	0.6299	


Auxiliary Tests	Auxiliary Tests								Skew	Kurt
Shapiro-Wilk's Test indicates nor	hapiro-Wilk's Test indicates non-normal distribution (p <= 0.05)								1.32115	2.23646
Bartlett's Test indicates unequal	variances ()	= 5.28E	-03)		16,6213		15.0863			
The control means are not signifi	cantly differ	ent (p = 0	).45)		0.80828		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Bonferroni t Test	124	357	210.4		0.65839	0.30838	0.29339	0.13308	0.09893	5, 18
Treatments vs NEG negative con	trol									

Linear Interpolation (200 Resamples)

Point	g/ha	SD	95% CL	(Exp)	Skew
IC05*	2.20	26.35	0.06	197.82	4.1682
IC10*	4.40	54.32	0.12	311.41	2.6654
IC15	9.27				
IC20	63.19				
IC25	133.16				
IC40	>357				
IC50	>357				
* indicates	IC estimate les	s than the	lowest c	oncentrati	on

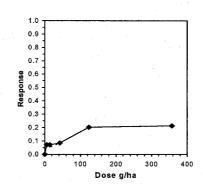




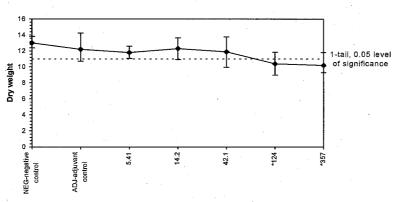


PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918


R	0	а	n

				T	errestrial plan	ts-Dry weight	
Start Date:			Test ID:	1547203		Sample ID:	BAS8002-12% saflufenacil
End Date:			Lab ID:	WI-Wildlife	International	Sample Type:	EP-end-use product
Sample Date:			Protocol:	OECD208-	Seedling emer	gen Test Species:	CRSP-crop species
Comments:							
Conc-g/ha	1	2	3	4			
egative control	13.840	13.140	12.400	12.690			
djuvant control	14.220	11.500	10.700	12.240			
5.41	12.600	11.880	11.070	11.690		1.0	
14.2	10.980	13.680	11.520	13.200			
42.1	9.940	13.760	11.220	12.690			
124	11.830	9.900	8.960	10.850			
357	9.350	10.150	9.650	11.840			the second of th


				Transforn	n: Untran	sformed			1-Tailed	-	Isot	onic
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
agative control	13.018	1.0701	13.018	12.400	13.840	4.818	4	*			13.018	1,0000
djuvant control	12.165	1.0000	12.165	10.700	14.220	12.392	4					
5.41	11.810	0.9708	11.810	11.070	12.600	5.335	4	1.476	2.410	1.972	12.078	0.9278
14.2	12.345	1.0148	12.345	10.980	13.680	10.517	4	0.822	2.410	1.972	12.078	0.9278
42.1	11.903	0.9784	11.903	9.940	13.760	14.048	4	1.363	2.410	.1.972	11.903	0.9143
*124	10.385	0.8537	10.385	8.960	11.830	11.885	4	3.218	2.410	1.972	10.385	0.7978
*357	10.248	0.8424	10.248	9.350	11.840	10.849	4	3.386	2.410	1.972	10.248	0.7872

Auxiliary Tests			-		Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p >	0.05)		0.97139		0.916		0.11086	-0.7552
Bartlett's Test indicates equal var	riances (p =	0.58)			3.77978		15.0863			
The control means are not signifi	cantly differ	rent (p = 0	0.34)		1.04428		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	42.1	124	72.2523		1.97161	0.15146	4.80279	1.33856	0.01996	5, 18
Tractments up NEC pagetive con	dro1									

				Linea	r interpolatio	n (200 Resamples)
Point	g/ha	\$D	95% CL	(Exp)	Skew	
IC05*	3.75	18.28	1.62	97.98	1.8199	
IC10	52.18	25.69	0.00	121.23	0.2444	
IC15	87.31					1.0
IC20	122.43					0.9
IC25	>357					0.9 ]
IC40	>357					0.8 -
IC50	>357					0.71



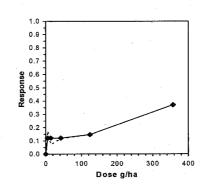


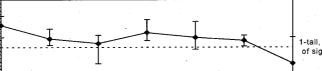


PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

Soybean					,		
				Terrestrial plan	ts-Dry weight		
Start Date: End Date: Sample Date: Comments:			Test ID: Lab ID: Protocol:	1547203 WI-Wildlife International OECD208-Seedling emer	Sample ID: Sample Type: gen Test Species:	BAS8002-12% saffufenacil EP-end-use product CRSP-crop species	
Conc-g/ha	1	2	3	4			
agative control	12.200	9.840	10.620	12.000			
juvant control	9.360	9.000	10.800	9.700			
5.41	9.840	10.100	9.900	7.000			
14.2	11.800	9.600	9.500	10.600			
42.1	10.160	11.600	8,560	9.100			
124	10,100	9.000	10.100	8.910			
357	7.490	4.860	5.880	9.900			

•				Transform: Untransformed					1-Tailed		Isotonic	
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N ·	t-Stat	Critical	MSD	Mean	N-Mean
egative control	11.165	1.1493	11.1650	9.8400	12.2000	10.108	4	*			11.165	1.0000
lortnoo tnavujt	9.715	1.0000	9.7150	9.0000	10.8000	8.006	4					
5.41	9.210	0.9480	9.2100	7.0000	10.1000	16.043	. 4	1.983	2.410	2.3762	9.813	0.8789
14.2	10.375	1.0679	10.3750	9.5000	11.8000	10.332	4	0.801	2.410	2.3762	9.813	0.8789
42.1	9.855	1.0144	9.8550	8.5600	11.6000	13.595	4	1,329	2.410	2.3762	9.813	0.8789
124	9.528	0.9807	9.5275	8.9100	10.1000	6.949	4	1.661	2.410	2.3762	9.528	0.8533
*357	7.033	0.7239	7.0325	4.8600	9.9000	31.240	4	4.191	2.410	2.3762	7.033	0.6299


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	mal distribu	ition (p > 1	0.05)		0.97078		0.916		0.15375	-0.0381
Bartlett's Test indicates equal var	riances (p =	0.55)	,		3.96593		15.0863			
The control means are not signifi	cantly differ	rent(p = 0)	(80.0		2.11583		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	124	357	210.4		2.37622	0.21283	7.8662	1.94432	0.0123	5, 18
Treatments we NEC possible con	tral									


Treatments	vs NEG-nega	LIVE COTTER	71	Lines	r Interpolation	(200 Resamples)
Point	g/ha	SD	95% CL		Skew	(200 House
IC05*	2.23	15.44	1.00	78.24	4.5670	
IC10*	4.47	47.33	2.00	229.11	1.7209	
IC15	127.48					1.0
IC20	179.61					0.9
IC25	231.74					0.9 ]
IC40	>357					0.8
IC50	>357					0.7

* indicates IC estimate less than the lowest concentration

14

Dry weight





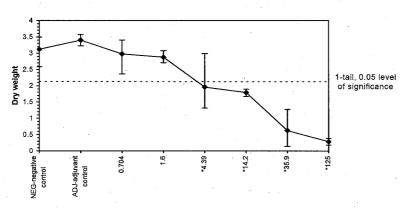
Dose-Response Plot

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Cabbage									٠	
				Т	errestrial plant	s-Dry weight				
Start Date:			Test ID:	1547203		Sample ID:	BAS	8002-12% s	aflufenacil	
End Date:			Lab ID:	WI-Wildlife	International	Sample Type:	EP-e	nd-use prod	duct	
Sample Date:			Protocol:	OECD208	-Seedling emerg	en Test Species:	CRS	P-crop spec	ies	
Comments:										
Conc-g/ha	1	2	3	4						
egative control	3.4920	3.4740	2.5830	2.9250						
ijuvant control	3.2900	3.5100	3.5730	3.2300						
0.704	3.4020	3.2100	2.9340	2.3600						
1.6	2.7480	3.0800	2.9880	2.7120						
4.39	1.8210	1.3120	2.9890	1.7320						
14.2	1.8090	1.6720	1.9000					*		
35.9	1.2700	0.1400	0.4700							
125	0.1800	0.3900								

				Transform: Untransformed				1-Tailed			Isotonic	
Conc-g/ha	Mean	N-Mean "	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
egative control	3.1185	0.9170	3.1185	2.5830	3.4920	14.222	4	. *		•	3.1185	1.0000
ljuvant control	3,4008	1,0000	3.4008	3.2300	3.5730	4.892	4					
0.704	2.9765	0.8752	2.9765	2.3600	3.4020	15.242	4	0.438	2.490	0.8078	2.9765	0.9545
1.6	2.8820	0.8475	2.8820	2.7120	3.0800	6.249	4	0.729	2.490	0.8078	2.8820	0.9242
*4.39	1.9635	0.5774	1.9635	1.3120	2.9890	36.608	4	3.560	2.490	0.8078	1.9635	0.6296
*14.2	1:7937	0.5274	1.7937	1.6720	1.9000	6.399	3	3.781	2.490	0.8725	1.7937	0.5752
*35.9	0.6267	0.1843	0.6267	0.1400	1.2700	92.723	3	7.111	2.490	0.8725	0.6267	0.2010
*125	0.2850	0.0838	0.2850	0.1800	0.3900	52.103	2	7.131	2.490	0.9894	0.2850	0.0914


Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates non	0.05)		0.95985		0.916		0.56143	0.81044		
Bartlett's Test indicates equal var	iances (p =	0.20)			8.49653		16.8119			
The control means are not signific	cantly differ	ent (p = 0	0.28)		1.19174		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1.6	4.39	2.65028		0.98936	0.31726	3.8443	0.2105	1.5E-06	6, 17

Treatments vs NEG-negative control

				Linea	ır Interpolati	on (200 Resamples)
Point	g/ha	SD	95% CL	(Exp)	Skew	
IC05	0.836	0.602	0.000	2.833	0.5523	
IC10	1.829	0.700	0.000	3.337	0.2868	·
IC15	2.303	0.766	0.000	4.533	1.3658	1.0
IC20	2.776	0.894	1.323	6.886	2.7338	0.9
IC25	3.250	1.241	1.891	9.745	2.6187	0.9 ]
IC40	9.727	4.193	0.169	19.056	0.1086	0.8 -
IC50	18.559	2.283	11.785	25.175	-0.6507	0.7



Dose-Response Plot

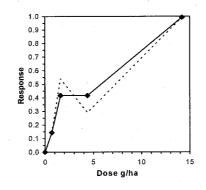


Page 85 of 89

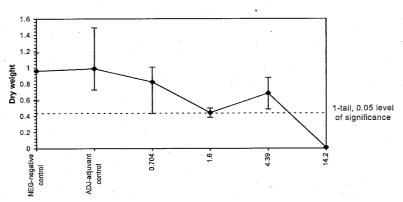
PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

Lettuce								
		**************************************		Terr	estrial plants	-Dry weight		
Start Date: End Date:			Test ID: Lab ID:	1547203 WI-Wildlife In	ternational	Sample ID: Sample Type:	BAS8002- EP-end-us	12% saflufenacil e product
Sample Date: Comments:						en Test Species:	CRSP-cro	
Conc-g/ha	1	2	3	. 4				
egative control	1.1250	0.9420	0.5940	1.1830				
djuvant control	1.4910	0.8820	0.7260	0.8520				
0.704	1.0050	0.9200	0.9360	0.4320				к
1.6	0.5000	0.3840						
4.39	0.4860	0.8760						•
14.2	0.0070							


			Transform: Untransformed					_	1-Tailed			Isotonic	
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean	
gative control	0.9610	0.9729	0.9610	0.5940	1.1830	27.612	4.	*			0.9610	1.0000	
diuvant control	0.9878	1.0000	0.9878	0.7260	1.4910	34.648	4					•	
0.704	0.8233	0.8335	0.8233	0.4320	1.0050	31,999	4	0.778	2.420	0.4287	0.8233	0.8567	
1.6	0.4420	0:4475	0.4420	0.3840	0.5000	18.558	2	2.392	2.420	0.5251	0.5615	0.5843	
4.39	0.6810	0.6894	0.6810	0.4860	0.8760	40.495	2	1.290	2.420	0.5251	0.5615	0.5843	
14.2	0.0070	0.0071	0.0070	0.0070	0.0070	0.000	1				0.0070	0.0073	

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor	0.05)		0.86628		0.859		-0.9577	-0.3302		
Bartlett's Test indicates equal var					1.08875		11.3449			
The control means are not signifi			.91)		0.12354		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	4.39	>4.39			0.52509	0.5464	0.12886	0.06277	0.18508	3, 8


Treatments vs NEG-negative control

Linear Interpolation (200 Resamples)

			Line	ii iiiicipula
g/ha	SD	95% CI	L(Exp)	Skew
0.2456	0.2968	0.0000	1.5834	0.5038
0.4911	0.3060	0.0000	1.6883	0.1996
0.7259	0.4156	0.0000	1.8051	4.2536
0.8904	0.6990	0.0000	2.3068	4.4548
1.0549	0.9090	0.0000	9.1410	3.7307
1.5483	2.0362	0.0000	12.5475	0.6341
5.8230	1.9038	0.0000	10.4781	-0.9993
	0.2456 0.4911 0.7259 0.8904 1.0549 1.5483	0.2456 0.2968 0.4911 0.3060 0.7259 0.4156 0.8904 0.6990 1.0549 0.9090 1.5483 2.0362	0.2456 0.2968 0.0000 0.4911 0.3060 0.0000 0.7259 0.4156 0.0000 0.8904 0.6990 0.0000 1.0549 0.9090 0.0000 1.5483 2.0362 0.0000	g/ha         SD         95% CL(Exp)           0.2456         0.2968         0.0000         1.5834           0.4911         0.3060         0.0000         1.6883           0.7259         0.4156         0.0000         1.8051           0.8904         0.6990         0.0000         2.3068           1.0549         0.9090         0.0000         9.1410           1.5483         2.0362         0.0000         12.5475





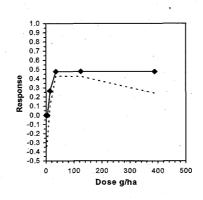


Page 86 of 89

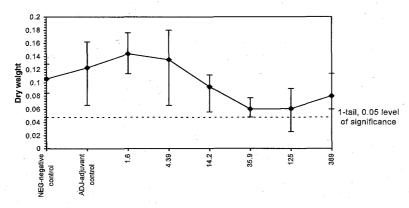
PMRA Submission Number: 2008-0431

PMRA Document ID: 1547203 EPA MRID Number: 47127918

				T	errestrial plan	ts-Dry weight		
Start Date: End Date: Sample Date: Comments:			Test ID: Lab ID: Protocol:		International Seedling emer	Sample ID: Sample Type: genTest Species:	BAS8002-12% saflufe EP-end-use product CRSP-crop species	enacil
Conc-g/ha	1	2	3	4				
egative control	0.0840	0.1280	0.1200	0.0900				
djuvant control	0.0660	0.1280	0.1350	0.1620				
1.6	0.1760	0.1530	0.1330	0.1140				
4.39	0.0660	0.1760	0.1800	0.1190				
14.2	0.1120	0.0980	0.0560	0.1100				
35.9	0.0660	0.0500	0.0770	0.0480				
125	0.0910	0.0260	0.0660	0.0600				
389	0.0600	0.1140	0.0660					


			Transform: Untransformed					1-Tailed			Isotonic	
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
egative control	0.1055	0.8595	0.1055	0.0840	0.1280	20.615	4	*	-		0.1283	1.0000
djuvant control	0.1228	1.0000	0.1228	0.0660	0.1620	33.054	4					
1.6	0.1440	1.1731	0.1440	0.1140	0.1760	18.487	4	-1.777	2.460	0.0533	0.1283	1.0000
4.39	0.1353	1.1018	0.1353	0.0660	0.1800	39.868	4	-1.373	2.460	0.0533	0.1283	1.0000
14.2	0.0940	0.7658	0.0940	0.0560	0.1120	27.741	4	0.531	2.460	0.0533	0.0940	0.7329
35.9	0.0603	0.4908	0.0603	0.0480	0.0770	22.853	4	2.088	2.460	0.0533	0.0670	0.5224
125	0.0608	0.4949	0.0608	0.0260	0.0910	44.075	4	2.065	2.460	0.0533	0.0670	0.5224
389	0.0800	0.6517	0.0800	0.0600	0.1140	36.997	3	1.090	2.460	0.0576	0.0670	0.5224

Auxiliary Tests					Statistic		Critical		Skew	Kurt
Shapiro-Wilk's Test indicates nor		0.97393		0.923		-0.4315	0.1952			
Bartlett's Test indicates equal var	riances (p =	0.48)			5.4805		16.8119			
The control means are not signifi	cantly differ	rent(p = 0)	.48)		0.74942		2.44691			
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	389	>389			0.05757	0.54571	0.00442	0.00094	0.00385	6, 20


Treatments vs NEG-negative control

Linear Interpolation (200 Resamples)

				ir interpola	
Point	g/ha	SD	95% CL	(Exp)	Skew
IC05	6.227	1.867	0.000	11.498	0.1513
IC10	8.063	2.854	0.000	19.219	0.7660
IC15	9,900	3.560	0.000	23.808	0.6639
IC20	11.737	4.301	0.000	28.126	0.6136
IC25	13.573	5.019	.0.000	34.549	0.5988
IC40	27.903				
IC50	>389	1.			



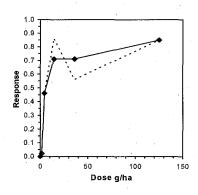
Dose-Response Plot



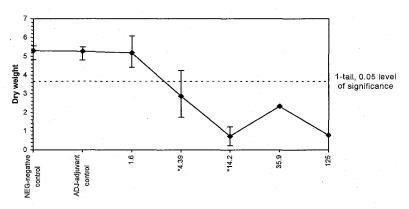
Page 87 of 89

PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918


Terrestrial plants-Dry weight										
Start Date: End Date: Sample Date: Comments:			Test ID: Lab ID: Protocol:		e International -Seedling emerg	Sample ID: Sample Type: en Test Species:	BAS8002-12% saflufenacíl EP-end-use product CRSP-crop species			
Conc-g/ha	1	2	3	4						
agative control	5.3480	5.4900	4.8400	5,5600						
djuvant control	5.3130	5.4990	5.4540	4.8000						
1.6	6.0900	4.4280	4.6680	5.5920						
4.39	4.2400	3.3400	2.1400	1.7400		,	•			
14.2	0.2310	1.2300								
35.9	2.3300									
125	0.7900									

		Transform: Untransformed					1-Tailed			Isotonic		
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
egative control	5.3095	1.0082	5,3095	4.8400	5,5600	6.125	4	*			5.3095	1.0000
djuvant control	5.2665	1.0000	5,2665	4.8000	5.4990	6.094	4					
1.6	5.1945	0.9863	5.1945	4.4280	6.0900	15.014	4	0.201	2.340	1.3390	5.1945	0.9783
*4.39	2.8650	0.5440	2.8650	1.7400	4.2400	39.835	4	4.272	2.340	1.3390	2.8650	0.5396
*14.2	0.7305	0.1387	0.7305	0.2310	1.2300	96.701	2	6.534	2.340	1.6399	1.5303	0.2882
35.9	2.3300	0.4424	2.3300	2.3300	2.3300	0.000	1				1.5303	0.2882
125	0.7900	0.1500	0.7900	0.7900	0.7900	0.000	1.	1.			0.7900	0.1488


Auxiliary Tests		Statistic		Critical		Skew	Kurt			
Shapiro-Wilk's Test indicates nor		0.96429		0.874		0.2522	-0.5749			
Bartlett's Test indicates equal val		3,22052		11.3449						
The control means are not signifi					0.18823					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
Dunnett's Test	1.6	4.39	2.65028		1.63989	0,30886	13.006	0.65484	1.6E-04	3, 10

Treatments vs NEG-negative control

				Line	ar Interpolation	on (200 Resamples)
Point	g/ha	SD	95% C	L(Exp)	Skew	
IC05	1.7802	0.4887	0.0000	2.2738	-0.6666	
IC10	2.0982	0.3316	0.2324	2.7962	-0.8203	
IC15	2.4161	0.2985	0.9838	3.3185	-0.2965	1.0
IC20	2.7341	0.3183	1.2887	3.8408	0.0473	0.9
IC25	3.0520	0.3695	1.5554	4.5654	0.3658	0.9 7
IC40	4.0059	0.9475	2.3957	9.6555	1.5127	0.8
IC50	5.9353	1.8429	1.3367	12.8183	0.5013	0.7



Dose-Response Plot

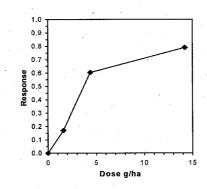


Page 88 of 89

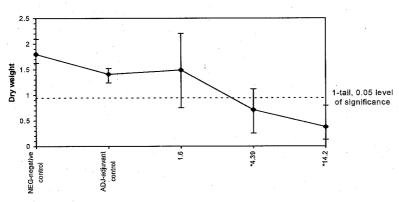
PMRA Submission Number: 2008-0431 PMRA Document ID: 1547203

EPA MRID Number: 47127918

Tomato										
Terrestrial plants-Dry weight										
Start Date: End Date: Sample Date: Comments:	:		Test ID: Lab ID: Protocol:		International Seedling emer	Sample ID: Sample Type: gen Test Species:	BAS8002-12% saflufenacil EP-end-use product CRSP-crop species			
Conc-g/ha	1	2	3	4				-		
egative control	1.6240	2.0930	1.7050	1.7640						
djuvant control	1.4200	1,2480	1.4560	1.5300	,					
1.6	0.8970	2.1060	0.7550	2.2080						
4.39	1.1240	0.7320	0.2560	0.7350						
14.2	0.2100	0.1290	0.7940							


				Transforr	n: Untran	sformed		*	1-Tailed		Isot	onic
Conc-g/ha	Mean	N-Mean	Mean	Min	Max	CV%	N	t-Stat	Critical	MSD	Mean	N-Mean
egative control	1.7965	1.2710	1.7965	1.6240	2.0930	11.457.	4	*			1.7965	1.0000
diuvant control	1.4135	1,0000	1.4135	1.2480	1.5300	8.451	4					
1.6	1.4915	1.0552	1.4915	0.7550	2.2080	51.744	4	0.895	2.310	0.7873	1.4915	0.8302
*4.39	0.7118	0.5035	0.7118	0.2560	1.1240	49.912	4	3.183	2.310	0.7873	0.7118	0.3962
*14.2	0.3777	0.2672	0.3777	0.1290	0.7940	96.070	3⋅	3.854	2.310	0.8504	0.3777	0.2102

Auxiliary Tests							Kurt
15)		0.97032		0.881		0.04003	-0.6677
Shapiro-Wilk's Test indicates normal distribution (p > 0.05) Bartlett's Test indicates equal variances (p = 0.21)							
	3.21871			2.44691		*	
ChV	TU	MSDu	MSDp	MSB	MSE	F-Prob	df
.65028		0.85043	0.47338	1.56505	0.23235	0.00763	3, 11
	ChV	ChV TU	4.53843 3.21871 ChV TU MSDu	5) 0.97032 4.53843 3.21871 ChV TU MSDu MSDp	5) 0.97032 0.881 4.53843 11,3449 3.21871 2.44691 ChV TU MSDu MSDp MSB	5) 0.97032 0.881 4.53843 11.3449 3.21871 2.44691 ChV TU MSDu MSDp MSB MSE	5) 0.97032 0.881 0.04003 4.53843 11.3449 3.21871 2.44691 ChV TU MSDu MSDp MSB MSE F-Prob


Treatments vs NEG-negative control

Linear Interpolation (200 Resamples)

Point -	g/ha	SD	95% CL	(Exp)	Skew
IC05*	0.4712	0.6819	0.0000	2.7331	0.6902
IC10*	0.9424	0.6806	0.0000	2.9061	0.3547
IC15*	1.4136	0.6903	0.0000	3.0792	0.0844
1C20	1.7943	0.7049	0.0000	3.3066	-0.0601
IC25	2.1157	0.7256	0.0000	3.6019	-0.1644
IC40	3.0799	0.7556	0.0077	4.4736	-0.5364
IC50	3.7227	1.0556	0.0860	8.3758	1.0796







•						
	•					
					•	
	•					
Ç Î.						
				•		
			• .			
					•	
		•				
				,		
		•				
	•					
					*	
•						